News

Filter by:
Filter by:
Lab
Topics

Whitehead Institute researchers have identified an area in the developing face of embryonic frogs that unzips to form the mouth. The scientists, who named this region the “pre-mouth array”, have also discovered the cellular signaling that triggers its formation. Elucidating this critical aspect of craniofacial development in a model organism enhances understanding of and potential treatment for human facial birth defects.

MIT and Whitehead Institute scientists have developed a new type of easily customizable vaccine that can be manufactured in one week, allowing it to be rapidly deployed in response to disease outbreaks. So far, they have designed vaccines against Ebola, H1N1 influenza, and Toxoplasma gondii (a relative of the parasite that causes malaria), which were 100 percent effective in tests in mice.

Using tiny, alpaca-derived, single-domain antibody fragments, Whitehead Institute scientists have developed a method to perturb cellular processes in mammalian cells, allowing them to tease apart the roles that individual proteins play in these pathways. With improved knowledge of protein activity, scientists can better understand not only basic biology but also how disease corrupts cellular function and identify potential therapeutics to rectify these aberrations.

Using a novel method, Whitehead Institute researchers have determined how mutations that are not located within genes are identified through genome-wide association studies (GWAS) and can contribute to sporadic Parkinson’s disease, the most common form of the condition. The approach could be used to analyze GWAS results for other sporadic diseases with genetic causes, such as multiple sclerosis, diabetes, and cancer.