News

Filter by:
Filter by:
Lab
Topics

Susan Lee Lindquist, Ph.D., Member and former Director of Whitehead Institute, and one of the nation’s most lauded scientists, yesterday succumbed to cancer. Her nearly 40-year career was defined by intellectually courageous, boundary-defying research and a passion for nurturing new generations of scientific talent. 

“Sue has meant so much to Whitehead as an institution of science, and as a community of scientists, and her passing leaves us diminished in so many ways,” reflects David C. Page, M.D., Director of Whitehead Institute and Professor of Biology at the Massachusetts Institute of Technology (MIT). “She was a risk-taker and an innovator. She believed that if we were not reaching for things beyond our grasp, we were not doing our job as researchers; if we were not constantly striving for that which we could only imagine, we were not fulfilling our obligations to society as scientists.”

Prions are infamous for causing Creutzfeld-Jakob disease, fatal familial insomnia, and bovine spongiform encephalopathy, commonly known as mad cow’s disease. Yet, it’s not likely that’s all they’re good for. Using an unbiased screen in yeast, a team of Whitehead Institute and Stanford University scientists have identified dozens of prion-like proteins that could change the defining characteristics of these unusual proteins. 

Whitehead Institute scientists have devised a protocol for pushing human pluripotent stem cells to become microglia—the specialized immune cells that maintain the brain and care for it after injury. Microglia play an important role in neurodegenerative diseases, including Parkinson’s and Alzheimer’s, and studying these cells has been very difficult until now.

Inherited methylation—a form of epigenetic regulation passed down from parents to offspring—is far more dynamic than previously thought and may contribute to changes in the brain and other tissues over time. This finding by Whitehead Institute scientists challenges current understandings of gene regulation via methylation, from development through adulthood.  

Whitehead Institute scientists have developed a method to quickly isolate mitochondria from mammalian cells and systematically measure the concentrations of mitochondrial metabolites. Mitochondrial dysfunction is found in several disorders, including Parkinson’s disease, cardiovascular disease, and mitochondrial diseases. Until now, peering into the inner metabolic workings of these vital organelles has been very challenging.

By identifying new compounds that selectively block mitochondrial respiration in pathogenic fungi, Whitehead Institute scientists have identified a potential antifungal mechanism that could enable combination therapy with fluconazole, one of today’s most commonly prescribed fungal infection treatments. Severe, invasive fungal infections have a mortality rate of 30-50% and cause an estimated 1.5 million deaths worldwide annually. Current antifungal therapies are hampered by the increasingly frequent emergence of drug resistance and negative interactions that often preclude combination use.