Fink Lab

Candida albicans is a human pathogen that causes potentially lethal infections in immunocompromised individuals. Efforts to overcome Candida’s innate resistance to many drugs have been thwarted by an absence of tools enabling genetic modifications. Now, using a modified CRISPR-Cas system, Whitehead Institute researchers can edit the fungus’s genome systematically—an approach that could help scientists understand Candida’s unique biology and identify potential drug targets.

Deploying sophisticated high-throughput sequencing technology, dubbed ψ-seq, a team of Whitehead Institute and Broad Institute researchers collaborated on a comprehensive, high-resolution mapping of ψ sites that confirms pseudouridylation, the most common post-transcriptional modification, does indeed occur naturally in mRNA.

Whitehead Institute and MIT chemical engineers and biologists have now devised a way to dramatically boost isobutanol production in yeast, which naturally make it in small amounts. They engineered yeast so that isobutanol synthesis takes place entirely within mitochondria, cell structures that generate energy and also host many biosynthetic pathways.

A team of scientists from Whitehead Institute and other institutions has shown for the first time how two long intergenic noncoding RNAs (ncRNAs) in brewer’s yeast (Saccharomyces cerevisiae) contribute to a location-dependent switch for the yeast FLO11 gene to toggle between active and inactive states.