News

Filter by:
Filter by:
Lab
Topics

The Whitehead Institute for Biomedical Research has received a three-year, $7 million grant from the National Human Genome Research Institute to develop chip-based genome sequencing machines that can sequence 7 million DNA letters per day, or 2 billion letters per year. Once these machines are up and running, it would be possible to use as few as 20 machines to sequence an entire mammalian genome in one year, according to Whitehead scientists.

Tetley is no ordinary mouse. And it's not just because he's a clone. Tetley is special because he was created using a new technology that researchers say has produced the most efficient results to date for cloning mice. He is also the first mouse clone whose genetic material was modified in the laboratory before cloning. The technology used to create Tetley, say researchers, will have a major impact on improving the efficiency of cloning in general.

For decades, many researchers thought that ribonucleic acid, or RNA, was nothing more than a molecular interpreter that helps translate DNA codes into proteins. But research over the past 15 years, including studies at the Whitehead Institute, has been lending credence to the notion of a so-called “RNA world,” an era in early evolution when all life forms were based on RNA.

The next time you pick up a bag of weed killer from The Home Depot, think about this: a chemical company probably spent years of testing and millions of dollars to develop an effective herbicide that is harmful to weeds but safe for you, your children, and your pets. Now a new study of root growth in a tiny weed called Arabidopsis thaliana suggests that genetics could help scientists save valuable time and money in developing better herbicides for the future.

Scientists at the Whitehead Institute for Biomedical Research have established for the first time that DNA methylation, a chemical process by which cells alter how genes are read without changing the basic text, may also be responsible for maintaining the integrity of the genome, or in other words, for ensuring that the 3 billion-letter DNA code is copied accurately when cells divide.

On Tuesday, December 16, President Clinton will present the National Medal of Science, the nation's highest scientific honor, to Whitehead Member and cancer research pioneer Dr. Robert A. Weinberg and eight other recipients. Dr. Weinberg is a founding member of the Whitehead Institute for Biomedical Research, the Daniel K. Ludwig Professor for Cancer Research in the Department of Biology at the Massachusetts Institute of Technology (MIT), and an American Cancer Society Research Professor at MIT.

For decades scientists thought that the human Y chromosome, the male sex chromosome, was nothing more than a smaller, less stable version of its partner, the X (the sex chromosome present in both females and males). However, new research led by Dr. David Page, member of the Whitehead Institute for Biomedical Research, and associate investigator of the Howard Hughes Medical Institute, reverses this unflattering picture of the Y and reveals it as a crucial player in the evolution of sex chromosomes and also as a safe haven for male fertility genes. These results are not only generating a new respect for the Y chromosome but also could lead to novel diagnostic techniques for thousands of infertile men. The results also have profound implications for understanding the genetic differences between men and women and the genetic underpinnings of chromosomal disorders such as Turner syndrome.

New images of an L-shaped molecule on the surface of a mouse leukemia virus could help scientists realize the promise of human gene therapy—the effort to cure disease by inserting genes directly into human cells. The images, published in the September 12 issue of Science, show the crystal structure of a piece of the virus's envelope protein—the piece required to recognize and bind to receptors on the surface of a mammalian cell.

A new study has uncovered the genetic wiring diagram underlying the infectiousness of Candida albicans, a fungus that causes thrush in babies, vaginal infections in women, and life-threatening infections in chemotherapy and AIDS patients. The study, led by Dr. Gerald R. Fink, Director of the Whitehead Institute for Biomedical Research, reveals that one key to Candida's infectiousness lies in its ability to switch from a rounded form to filamentous forms. When the wiring diagram underlying this switch is inactivated, Candida infections are no longer deadly in mice.