News

Filter by:
Filter by:
Lab
Topics

Whitehead researchers provide insight into a specific gene pathway that appears to regulate the growth, structure, and organization of the human cortex. They also demonstrate that 3D human cerebral organoids--miniature, lab-grown versions of specific brain structures--can be effective in modeling the molecular, cellular, and anatomical processes of human brain development. And they suggest a new path for identifying the cells affected by Zika virus.

Whitehead Institute researchers have determined how the master transcriptional regulator of the heat shock response, known as heat shock factor 1 (HSF1), is controlled in yeast. Understanding how HSF1 works, how it is regulated, and how to fine tune it in a cell-type specific way could lead to therapies for cancer and neurodegenerative diseases.

Susan Lee Lindquist, Ph.D., Member and former Director of Whitehead Institute, and one of the nation’s most lauded scientists, yesterday succumbed to cancer. Her nearly 40-year career was defined by intellectually courageous, boundary-defying research and a passion for nurturing new generations of scientific talent. 

“Sue has meant so much to Whitehead as an institution of science, and as a community of scientists, and her passing leaves us diminished in so many ways,” reflects David C. Page, M.D., Director of Whitehead Institute and Professor of Biology at the Massachusetts Institute of Technology (MIT). “She was a risk-taker and an innovator. She believed that if we were not reaching for things beyond our grasp, we were not doing our job as researchers; if we were not constantly striving for that which we could only imagine, we were not fulfilling our obligations to society as scientists.”

Prions are infamous for causing Creutzfeld-Jakob disease, fatal familial insomnia, and bovine spongiform encephalopathy, commonly known as mad cow’s disease. Yet, it’s not likely that’s all they’re good for. Using an unbiased screen in yeast, a team of Whitehead Institute and Stanford University scientists have identified dozens of prion-like proteins that could change the defining characteristics of these unusual proteins. 

Whitehead Institute scientists have devised a protocol for pushing human pluripotent stem cells to become microglia—the specialized immune cells that maintain the brain and care for it after injury. Microglia play an important role in neurodegenerative diseases, including Parkinson’s and Alzheimer’s, and studying these cells has been very difficult until now.

Whitehead Institute scientists have deciphered how to use a modified CRISPR/Cas9 gene editing system to change genes’ methylation state, thereby activating or silencing those genes. Proper methylation is critical for normal cellular operations and altered methylation has been linked to many diseases, including neurological disorders and cancer.

Inherited methylation—a form of epigenetic regulation passed down from parents to offspring—is far more dynamic than previously thought and may contribute to changes in the brain and other tissues over time. This finding by Whitehead Institute scientists challenges current understandings of gene regulation via methylation, from development through adulthood.