News

Filter by:
Filter by:
Lab
Topics

Researchers from the Whitehead Institute and Genset Corporation have found a new compound that controls weight gain in obese mice without affecting their food intake. The compound, called gAcrp30 and administered in daily low doses, caused profound and sustained weight loss in chubby mice eating a cafeteria diet—meals high in fat and sugar and available in unlimited quantities. Continuing the low daily doses allowed the mice to keep the weight off over a sustained period of time despite their fattening diet.

At first glance, yeast growing on a jello-like medium look breathtakingly beautiful—like gossamer flowers with radial spokes emanating from a central hub (see cover of Science). But a florid fungus can be a dangerous beauty, able to coat medical implants with thin films causing serious complications in patients with hip and valve replacements. In fact, every year thousands of deaths can be traced to fungal infections around medical implants.

In a promising advance in the war against AIDS, scientists have designed a potent, new protein that can prevent HIV infection by blocking its entry into human cells. The protein, called 5-Helix and designed to bind to a region in the HIV coat protein gp41, is able to prevent a wide range of HIV strains from fusing to the cell membrane and thereby infecting it.

Researchers at the Whitehead Institute and Corning Inc. have invented a powerful new mircroarray technique that can decipher the function of master switches in a cell by identifying the circuit, or the set of genes, they control across the entire genome. The researchers show that the technique can correctly identify the circuits controlled by two known master switches in yeast. In addition, the technique allows researchers to unravel in a week what takes years to achieve by conventional methods.

Settling a hotly debated issue in the field of cloning, a team of researchers from the Whitehead Institute and the University of Hawaii has shown that the egg can reset the developmental clock of a female adult cell, first reversing and then faithfully reproducing an early genetic event called X-inactivation. X-inactivation is a process by which one of two X chromosomes in female embryos is randomly silenced during development.

Whitehead members Peter S. Kim and Robert A. Weinberg are among the sixty new members elected this year to the Institute of Medicine (IOM), a unit of the National Academy of Sciences. New members are elected based on their major contributions to health and medicine. Kim and Weinberg join Whitehead members Gerald R. Fink and Eric S. Lander, who are current members of the IOM.

Researchers at the Whitehead Institute and The Sanger Centre report their contributions to the methodology and progress of The SNP Consortium, an international effort to assemble and release the first high-resolution map of common variations in human DNA called single nucleotide polymorphisms, or SNPs. SNPs are the bedrock of human genetics: they can be used to track inheritance of any gene, contribute to the traits that make us unique, and underlie our susceptibilities to common diseases such as cancer, diabetes, and heart disease. It is also believed that SNPs help explain why individuals respond differently to drugs.

Researchers at the Whitehead Institute have shown that a common genetic variant increases the risk of contracting type 2 diabetes. The variant, a single nucleotide polymorphism (SNP) in a gene called PPAR gamma, is carried by billions of people and helps to explain why some people are more likely than others to contract diabetes. The study, published in the September issue of Nature Genetics, has several implications: it offers new insights into the underlying causes of diabetes and more generally provides a blueprint for analyzing the role of SNPs in disease.

For more than half a century, the field of human genetics has harbored a gender bias about the relative contribution of males versus females to human evolution. Since 1947, when biologist J.B.S Haldane suggested that the rate of genetic mutation is much higher in the male germ line than in the female germ line, geneticists have credited males with much of the evolutionary changes that occurred in the 5 million years since human ancestors departed from chimpanzees.