Cancer

Protein production or translation is tightly coupled to a highly conserved stress response—the heat shock response and its primary regulator, heat shock factor 1 (HSF1)—that cancer cells rely on for survival and proliferation, according to Whitehead Institute researchers. In mouse models of cancer, therapeutic inhibition of translation interrupts HSF1’s activity, dramatically slowing tumor growth and potentially rendering drug-resistant tumors responsive to other therapies.

Whitehead Institute researchers have determined that in basal breast cancer cells a transcription factor known as ZEB1 is held in a poised state, ready to increase the cells’ aggressiveness and enable them to transform into cancer stem cells capable of seeding new tumors throughout the body. Intriguingly, luminal breast cancer cells, which are associated with a much better clinical prognosis, carry this gene in a state in which it seems to be permanently shut down.

According to Whitehead Institute researchers, a protein known as monocarboxylate transporter 1 (MCT1), which is highly expressed in a subset of metabolically altered cancer cells, is needed for the entry of the investigational cancer drug 3-bromopyruvate (3-BrPA) into malignant cells.

Whitehead Institute researchers have determined the mechanism used by c-Myc to increase the expression of all active genes in cancer cells. Elevated levels of c-Myc are linked to increased rates of metastasis, disease recurrence, and mortality in cancer patients. Guided by this new model, researchers hope to find ways to restrict c-Myc's activity to eradicate cancer cells that become dependent on c-Myc for their survival.

Scientists have created a new strain of mice lacking cyclin D1, a vital component of the growth machinery in all cells, and found that knocking out this important cog causes surprisingly little damage. These results have implications for treating human breast cancer and should lead to a better understanding of the molecular basis of cancer. The study, reported in the August 25 issue of Cell, was carried out in the laboratory of Dr. Robert Weinberg, a cancer research pioneer at the Whitehead Institute for Biomedical Research.