Cancer

According to Whitehead Institute researchers, a protein known as monocarboxylate transporter 1 (MCT1), which is highly expressed in a subset of metabolically altered cancer cells, is needed for the entry of the investigational cancer drug 3-bromopyruvate (3-BrPA) into malignant cells.

Whitehead Institute researchers have determined the mechanism used by c-Myc to increase the expression of all active genes in cancer cells. Elevated levels of c-Myc are linked to increased rates of metastasis, disease recurrence, and mortality in cancer patients. Guided by this new model, researchers hope to find ways to restrict c-Myc's activity to eradicate cancer cells that become dependent on c-Myc for their survival.

Scientists have created a new strain of mice lacking cyclin D1, a vital component of the growth machinery in all cells, and found that knocking out this important cog causes surprisingly little damage. These results have implications for treating human breast cancer and should lead to a better understanding of the molecular basis of cancer. The study, reported in the August 25 issue of Cell, was carried out in the laboratory of Dr. Robert Weinberg, a cancer research pioneer at the Whitehead Institute for Biomedical Research.

New findings by scientists at the Broad Institute of MIT and Harvard and Whitehead Institute point to a decentralized society in tumors, with cancer cells able to interconvert between different types. These results have potential implications for the treatment of tumors, in particular, that attacking cancer stem cells alone may not be enough to fight cancer.