Tag: Young Lab

Scientists Produce the Script for Life

October 24, 2002

Imagine popping a movie into the VCR or DVD player and watching a list of credits for two hours—no movie, no plot, no dialogue—just the cast. That’s the problem facing contemporary biology. The human genome project has provided researchers with a growing list of genes—basically a cast of thousands of characters, running life inside the cell. But the key to understanding life, both in health and sickness, is the script that outlines how these cellular players interact, communicate, and cue each other.

Scientists Build Case for "Haplotype" Map of Human Genome, Find New Gene for Crohn’s Disease

October 3, 2001

In two companion papers this week, researchers from the Whitehead Institute Center for Genome Research report important findings that set the stage for the next steps in the Human Genome Project—mapping and identifying all the genes that predispose us to common diseases. The studies, one by Mark Daly, Eric Lander, and colleagues, and the other by John Rioux and colleagues at Whitehead Genome Center, provide the impetus for building a “haplotype” map of the genome—a map that will make it easier, faster, and perhaps cheaper to find disease-causing or disease-predisposing genes.

Researchers Build Diagram of Cell Cycle Clock

September 28, 2001

For the first time, researchers at the Whitehead Institute have mapped the complete circuit of one of life's most fundamental processes—the cell cycle, which tells cells when to divide. This network diagram describes the genetic switches and connections that form the circuit common to a process found in all living organisms, from bacteria to human beings. The findings were published in the September 21 issue of Cell by Whitehead Member Richard Young and his colleagues.

New DNA Array Method Helps Researchers Decipher Genome's Master Switches

December 21, 2000

Researchers at the Whitehead Institute and Corning Inc. have invented a powerful new mircroarray technique that can decipher the function of master switches in a cell by identifying the circuit, or the set of genes, they control across the entire genome. The researchers show that the technique can correctly identify the circuits controlled by two known master switches in yeast. In addition, the technique allows researchers to unravel in a week what takes years to achieve by conventional methods.

Recombinant Protein May Play Key Role in Treating Immunocompromised Patients

January 17, 2000

In a promising new advance in vaccine development, scientists have identified a protein fragment that is exceptionally potent in eliciting an immune response against infected cells and cancer cells. When scientists injected a vaccine containing this fragment into mice lacking a healthy immune system, the animals were able to mount a cellular immune response despite their compromised immune system.

Scientists use DNA Chips to Dissect Cells’ Genome Circuitry

November 24, 1998

Using a hot new microchip technology, scientists at the Whitehead Institute for Biomedical Research have identified how key components of the cell’s gene-reading machinery coordinate the expression of genes throughout the genome of a living organism.

New Strategy for Combating Drug-Resistant Tuberculosis

April 10, 1997

Using a method of surveying an entire mammalian genome, scientists have discovered that an immune system protein may play a previously unsuspected role in quelling the spread of tuberculosis infection. The finding has implications for devising new therapies for tuberculosis (TB), especially for the drug resistant strains that now affect some 50 million people world wide. The study, reported in the June 10 issue of the Proceedings of the National Academy of Sciences, was led by Dr. Richard Young at the Whitehead Institute for Biomedical Research. "We believe this is the first time that scientists have used a survey of the entire genome to identify genes turned on by infectious agents. We suspect that this method (strategy) will become a powerful new weapon in the war against other microbes, including HIV," says Dr. Young.

New Strains of BCG Could Lead to Better Vaccines and Cancer Therapy

January 12, 1996

Researchers at the Whitehead Institute for Biomedical Research and Boston's Children's Hospital have found a new way to rev up the engines of the mammalian immune system. They have taken an organism used worldwide to vaccinate against tuberculosis and packaged inside it mammalian genes that stimulate immune cell function. This achievement could lead to more effective vaccines for a broad range of human diseases and also-because the same organism is used in immunotherapy for bladder cancer-to safer, more effective cancer therapy.

Pages

© Whitehead Institute for Biomedical Research              455 Main Street          Cambridge, MA 02142