Tag: Genetics + Genomics

Diagram of how editing methylation can change cells

Scientists use CRISPR/Cas9 to flip DNA methylation states in vivo

September 22, 2016

Whitehead Institute scientists have deciphered how to use a modified CRISPR/Cas9 gene editing system to change genes’ methylation state, thereby activating or silencing those genes. Proper methylation is critical for normal cellular operations and altered methylation has been linked to many diseases, including neurological disorders and cancer.

Image of mouse cerebellum section with cells having different imprinted methylation

Inherited parental methylation shifts over time, may have functional effects in the brain and other tissues

September 20, 2016

Inherited methylation—a form of epigenetic regulation passed down from parents to offspring—is far more dynamic than previously thought and may contribute to changes in the brain and other tissues over time. This finding by Whitehead Institute scientists challenges current understandings of gene regulation via methylation, from development through adulthood.  

Graphical abstract of the research described below

Defining what it means to be a naive stem cell

July 14, 2016

Whitehead Institute scientists have created a checklist that defines the “naive” state of cultured human embryonic stem cells (ESCs).  Such cells provide a better model of early human embryogenesis than conventional ESCs in later stages of development.

Cartoon of how a mutation in the genome's three-dimensional structure can activate previously silent oncogenes

Identifying a genetic mutation behind sporadic Parkinson’s disease

April 20, 2016

Using a novel method, Whitehead Institute researchers have determined how mutations that are not located within genes are identified through genome-wide association studies (GWAS) and can contribute to sporadic Parkinson’s disease, the most common form of the condition. The approach could be used to analyze GWAS results for other sporadic diseases with genetic causes, such as multiple sclerosis, diabetes, and cancer.

Cartoon of how a mutation in the genome's three-dimensional structure can activate previously silent oncogenes

There goes the neighborhood: Changes in chromosome structure activate cancer-causing genes

March 3, 2016

In a finding with enormous implications for cancer diagnostics and therapeutics, Whitehead Institute scientists have discovered that breaches in looping chromosomal structures known as “insulated neighborhoods” can activate oncogenes capable of fueling aggressive tumor growth. 

Diagram showing the frequency of mutations in the gene for RagC

Scientists identify mTOR pathway mutations in follicular lymphoma

December 21, 2015

A team of researchers from Whitehead Institute and Queen Mary University of London (QMUL) have identified in follicular lymphoma tumors a mutated protein that could serve as a biomarker to predict therapeutic response.

Schematic of looping chromosomal structure

3D map of human genome reveals relationship between mutations and disease development

December 10, 2015

Whitehead Institute researchers have created a map of the DNA loops that comprise the three dimensional (3D) structure of the human genome and contribute to gene regulation in human embryonic stem cells. The location of genes and regulatory elements within this chromosomal framework will help scientists better navigate their genomic research, establishing relationships between mutations and disease development.

Diagram of the crystal structure of Cas9 in complex with guide RNA and its target DNA.

Screen of human genome reveals set of genes essential for cellular viability

October 15, 2015

Using two complementary analytical approaches, scientists at Whitehead Institute and Broad Institute of MIT and Harvard have for the first time identified the universe of genes in the human genome essential for the survival and proliferation of human cell lines or cultured human cells. Their findings and the materials they developed in conducting the research will not only serve as invaluable resources for the global research community but should also have application in the discovery of drug-targetable genetic vulnerabilities in a variety of human cancers.

New methodology tracks changes in DNA methylation in real time at single-cell resolution

September 24, 2015

Whitehead Institute researchers have developed a tool that allows scientists to monitor changes in DNA methylation over time in individual cells. Certain diseases, including cancer, cause changes in DNA methylation patterns, and the ability to document these alterations could aid in the development of novel therapies.

Forks colliding: How DNA breaks during re-replication

June 4, 2015

Leveraging a novel system designed to examine the double-strand DNA breaks that occur as a consequence of gene amplification during DNA replication, Whitehead Institute scientists are bringing new clarity to the causes of such genomic damage. Moreover, because errors arising during DNA replication and gene amplification result in chromosomal abnormalities often found in malignant cells, these new findings may bolster our understandings of certain drivers of cancer progression.

Image of cells with and without RUNX1 turned on

Scientists identify gene required for differentiation of breast stem cells

May 6, 2015

Scientists have applied a new method of analyzing cell states to identify a gene required for breast stem cells to differentiate. This gene, RUNX1, is deregulated or mutated in some leukemias and breast cancers. The novel approach, known as PEACS, could also be used to screen for drugs that activate or inhibit the expression regulators of stem cell differentiation.

Image of brain samples showing gene activity in ischemic areas

Biologists identify brain tumor weakness

April 8, 2015

Biologists at Whitehead Institute and MIT have discovered a vulnerability of brain cancer cells that could be exploited to develop more-effective drugs against brain tumors.

Pages

© Whitehead Institute for Biomedical Research         Nine Cambridge Center    Cambridge, MA 02142