Tag: Genetics + Genomics

Growth medium based on human plasma rewires cell metabolism

April 6, 2017

Cultured human cells are the foundation for disease and drug research. Now Whitehead Institute researchers have designed a growth medium that more closely resembles the cells’ environment in the body—and demonstrated that, relative to decades-old recipes that have remained the workhorses of cell culture studies, it significantly alters the cells’ inner workings.

Image of an invasive outgrowth of cancer cells

Biomarker identified for likely aggressive, early stage breast cancer

April 3, 2017

Whitehead Institute scientists have identified a gene that could help clinicians discern which patients have aggressive forms of early stage breast cancer, which could prevent hundreds of thousands of women from undergoing unnecessary treatment and save millions of dollars.

Scientists engineer gene pathway to grow brain organoids with surface folding

January 3, 2017

Whitehead researchers provide insight into a specific gene pathway that appears to regulate the growth, structure, and organization of the human cortex. They also demonstrate that 3D human cerebral organoids--miniature, lab-grown versions of specific brain structures--can be effective in modeling the molecular, cellular, and anatomical processes of human brain development. And they suggest a new path for identifying the cells affected by Zika virus.

Diagram of how editing methylation can change cells

Scientists use CRISPR/Cas9 to flip DNA methylation states in vivo

September 22, 2016

Whitehead Institute scientists have deciphered how to use a modified CRISPR/Cas9 gene editing system to change genes’ methylation state, thereby activating or silencing those genes. Proper methylation is critical for normal cellular operations and altered methylation has been linked to many diseases, including neurological disorders and cancer.

Image of mouse cerebellum section with cells having different imprinted methylation

Inherited parental methylation shifts over time, may have functional effects in the brain and other tissues

September 20, 2016

Inherited methylation—a form of epigenetic regulation passed down from parents to offspring—is far more dynamic than previously thought and may contribute to changes in the brain and other tissues over time. This finding by Whitehead Institute scientists challenges current understandings of gene regulation via methylation, from development through adulthood.  

Graphical abstract of the research described below

Defining what it means to be a naive stem cell

July 14, 2016

Whitehead Institute scientists have created a checklist that defines the “naive” state of cultured human embryonic stem cells (ESCs).  Such cells provide a better model of early human embryogenesis than conventional ESCs in later stages of development.

Cartoon of how a mutation in the genome's three-dimensional structure can activate previously silent oncogenes

Identifying a genetic mutation behind sporadic Parkinson’s disease

April 20, 2016

Using a novel method, Whitehead Institute researchers have determined how mutations that are not located within genes are identified through genome-wide association studies (GWAS) and can contribute to sporadic Parkinson’s disease, the most common form of the condition. The approach could be used to analyze GWAS results for other sporadic diseases with genetic causes, such as multiple sclerosis, diabetes, and cancer.

Cartoon of how a mutation in the genome's three-dimensional structure can activate previously silent oncogenes

There goes the neighborhood: Changes in chromosome structure activate cancer-causing genes

March 3, 2016

In a finding with enormous implications for cancer diagnostics and therapeutics, Whitehead Institute scientists have discovered that breaches in looping chromosomal structures known as “insulated neighborhoods” can activate oncogenes capable of fueling aggressive tumor growth. 

Diagram showing the frequency of mutations in the gene for RagC

Scientists identify mTOR pathway mutations in follicular lymphoma

December 21, 2015

A team of researchers from Whitehead Institute and Queen Mary University of London (QMUL) have identified in follicular lymphoma tumors a mutated protein that could serve as a biomarker to predict therapeutic response.

Schematic of looping chromosomal structure

3D map of human genome reveals relationship between mutations and disease development

December 10, 2015

Whitehead Institute researchers have created a map of the DNA loops that comprise the three dimensional (3D) structure of the human genome and contribute to gene regulation in human embryonic stem cells. The location of genes and regulatory elements within this chromosomal framework will help scientists better navigate their genomic research, establishing relationships between mutations and disease development.

Diagram of the crystal structure of Cas9 in complex with guide RNA and its target DNA.

Screen of human genome reveals set of genes essential for cellular viability

October 15, 2015

Using two complementary analytical approaches, scientists at Whitehead Institute and Broad Institute of MIT and Harvard have for the first time identified the universe of genes in the human genome essential for the survival and proliferation of human cell lines or cultured human cells. Their findings and the materials they developed in conducting the research will not only serve as invaluable resources for the global research community but should also have application in the discovery of drug-targetable genetic vulnerabilities in a variety of human cancers.

New methodology tracks changes in DNA methylation in real time at single-cell resolution

September 24, 2015

Whitehead Institute researchers have developed a tool that allows scientists to monitor changes in DNA methylation over time in individual cells. Certain diseases, including cancer, cause changes in DNA methylation patterns, and the ability to document these alterations could aid in the development of novel therapies.

Pages

© Whitehead Institute for Biomedical Research              455 Main Street          Cambridge, MA 02142