Tag: Genetics + Genomics

Cartoon of how a mutation in the genome's three-dimensional structure can activate previously silent oncogenes

Identifying a genetic mutation behind sporadic Parkinson’s disease

April 20, 2016

Using a novel method, Whitehead Institute researchers have determined how mutations that are not located within genes are identified through genome-wide association studies (GWAS) and can contribute to sporadic Parkinson’s disease, the most common form of the condition. The approach could be used to analyze GWAS results for other sporadic diseases with genetic causes, such as multiple sclerosis, diabetes, and cancer.

Cartoon of how a mutation in the genome's three-dimensional structure can activate previously silent oncogenes

There goes the neighborhood: Changes in chromosome structure activate cancer-causing genes

March 3, 2016

In a finding with enormous implications for cancer diagnostics and therapeutics, Whitehead Institute scientists have discovered that breaches in looping chromosomal structures known as “insulated neighborhoods” can activate oncogenes capable of fueling aggressive tumor growth. 

Diagram showing the frequency of mutations in the gene for RagC

Scientists identify mTOR pathway mutations in follicular lymphoma

December 21, 2015

A team of researchers from Whitehead Institute and Queen Mary University of London (QMUL) have identified in follicular lymphoma tumors a mutated protein that could serve as a biomarker to predict therapeutic response.

Schematic of looping chromosomal structure

3D map of human genome reveals relationship between mutations and disease development

December 10, 2015

Whitehead Institute researchers have created a map of the DNA loops that comprise the three dimensional (3D) structure of the human genome and contribute to gene regulation in human embryonic stem cells. The location of genes and regulatory elements within this chromosomal framework will help scientists better navigate their genomic research, establishing relationships between mutations and disease development.

Diagram of the crystal structure of Cas9 in complex with guide RNA and its target DNA.

Screen of human genome reveals set of genes essential for cellular viability

October 15, 2015

Using two complementary analytical approaches, scientists at Whitehead Institute and Broad Institute of MIT and Harvard have for the first time identified the universe of genes in the human genome essential for the survival and proliferation of human cell lines or cultured human cells. Their findings and the materials they developed in conducting the research will not only serve as invaluable resources for the global research community but should also have application in the discovery of drug-targetable genetic vulnerabilities in a variety of human cancers.

New methodology tracks changes in DNA methylation in real time at single-cell resolution

September 24, 2015

Whitehead Institute researchers have developed a tool that allows scientists to monitor changes in DNA methylation over time in individual cells. Certain diseases, including cancer, cause changes in DNA methylation patterns, and the ability to document these alterations could aid in the development of novel therapies.

Forks colliding: How DNA breaks during re-replication

June 4, 2015

Leveraging a novel system designed to examine the double-strand DNA breaks that occur as a consequence of gene amplification during DNA replication, Whitehead Institute scientists are bringing new clarity to the causes of such genomic damage. Moreover, because errors arising during DNA replication and gene amplification result in chromosomal abnormalities often found in malignant cells, these new findings may bolster our understandings of certain drivers of cancer progression.

Image of cells with and without RUNX1 turned on

Scientists identify gene required for differentiation of breast stem cells

May 6, 2015

Scientists have applied a new method of analyzing cell states to identify a gene required for breast stem cells to differentiate. This gene, RUNX1, is deregulated or mutated in some leukemias and breast cancers. The novel approach, known as PEACS, could also be used to screen for drugs that activate or inhibit the expression regulators of stem cell differentiation.

Image of brain samples showing gene activity in ischemic areas

Biologists identify brain tumor weakness

April 8, 2015

Biologists at Whitehead Institute and MIT have discovered a vulnerability of brain cancer cells that could be exploited to develop more-effective drugs against brain tumors.

Image of red and white yeast colonies

CRISPR-Cas genome editing of Candida albicans holds promise for overcoming deadly fungal infections

April 3, 2015

Candida albicans is a human pathogen that causes potentially lethal infections in immunocompromised individuals. Efforts to overcome Candida’s innate resistance to many drugs have been thwarted by an absence of tools enabling genetic modifications. Now, using a modified CRISPR-Cas system, Whitehead Institute researchers can edit the fungus’s genome systematically—an approach that could help scientists understand Candida’s unique biology and identify potential drug targets.

Diagram of how Scr7 improves CRISPR/Cas

Refined CRISPR/Cas genome editing accelerates generation of transgenic mice

March 23, 2015

Although the genome editing system known as CRISPR/Cas has revolutionized genetic research in cell lines, its overall efficiency has been relatively poor when used to generate genetically altered animals for disease modeling.  Now Whitehead Institute scientists have altered the approach in a manner that could accelerate the production of mice carrying precise mutations of multiple genes.

Blocking a fork in the road to DNA replication

October 30, 2014

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It’s a finding that could shed new light on the formation of fragile genomic regions associated with chromosomal abnormalities.  

Pages

© Whitehead Institute for Biomedical Research         Nine Cambridge Center    Cambridge, MA 02142