News

Filter by:
Filter by:
Lab
Topics

Whitehead Institute scientists have developed a method to quickly isolate mitochondria from mammalian cells and systematically measure the concentrations of mitochondrial metabolites. Mitochondrial dysfunction is found in several disorders, including Parkinson’s disease, cardiovascular disease, and mitochondrial diseases. Until now, peering into the inner metabolic workings of these vital organelles has been very challenging.

By identifying new compounds that selectively block mitochondrial respiration in pathogenic fungi, Whitehead Institute scientists have identified a potential antifungal mechanism that could enable combination therapy with fluconazole, one of today’s most commonly prescribed fungal infection treatments. Severe, invasive fungal infections have a mortality rate of 30-50% and cause an estimated 1.5 million deaths worldwide annually. Current antifungal therapies are hampered by the increasingly frequent emergence of drug resistance and negative interactions that often preclude combination use.

Whitehead Institute researchers have identified an area in the developing face of embryonic frogs that unzips to form the mouth. The scientists, who named this region the “pre-mouth array”, have also discovered the cellular signaling that triggers its formation. Elucidating this critical aspect of craniofacial development in a model organism enhances understanding of and potential treatment for human facial birth defects.

Whitehead Institute scientists have created a checklist that defines the “naive” state of cultured human embryonic stem cells (ESCs).  Such cells provide a better model of early human embryogenesis than conventional ESCs in later stages of development.

MIT and Whitehead Institute scientists have developed a new type of easily customizable vaccine that can be manufactured in one week, allowing it to be rapidly deployed in response to disease outbreaks. So far, they have designed vaccines against Ebola, H1N1 influenza, and Toxoplasma gondii (a relative of the parasite that causes malaria), which were 100 percent effective in tests in mice.

Using tiny, alpaca-derived, single-domain antibody fragments, Whitehead Institute scientists have developed a method to perturb cellular processes in mammalian cells, allowing them to tease apart the roles that individual proteins play in these pathways. With improved knowledge of protein activity, scientists can better understand not only basic biology but also how disease corrupts cellular function and identify potential therapeutics to rectify these aberrations.

Whitehead Institute scientists have determined that a plant protein involved in the timing of flowering could in fact be a prion. This is the first time that a possible prion has been identified in plants, and it may play a role in a plant’s “memory” of cold exposure during winter.