Stem Cells

Metastatic cancer cells, which can migrate from primary tumors to seed new malignancies, have thus far been resistant to the current arsenal of anticancer drugs. Now, however, researchers at Whitehead Institute have identified a critical weakness that actually exploits one of these cells’ apparent strengths—their ability to move and invade tissues. Their research could inform novel approaches to screening tumors for personalized therapy or to drugs that specifically target these cells.

The lab of Whitehead Institute Member Peter Reddien is introducing the scientific community to the three-banded panther worm (Hofstenia miamia), a small organism with the ability to regenerate any missing body part. As a model, Hofstenia could help further our understanding of regeneration, how its mechanisms have evolved over millennia, and what limits regeneration in other animals, including humans. 

Whitehead Institute researchers have used the gene regulation system CRISPR/Cas (for “clustered regularly interspaced short palindromic repeat/CRISPR-associated) to engineer mouse genomes containing reporter and conditional alleles in one step. Animals containing such sophisticated engineered alleles can now be made in a matter of weeks rather than years and could be used to model diseases and study gene function.

Whitehead Institute researchers have determined that in basal breast cancer cells a transcription factor known as ZEB1 is held in a poised state, ready to increase the cells’ aggressiveness and enable them to transform into cancer stem cells capable of seeding new tumors throughout the body. Intriguingly, luminal breast cancer cells, which are associated with a much better clinical prognosis, carry this gene in a state in which it seems to be permanently shut down.