Cancer

Investigators at Whitehead Institute and the Broad Institute have succeeded in identifying the set of essential genes—those required for cellular proliferation and survival—in each of 14 human acute myeloid leukemia (AML) cell lines that had previously been characterized by genome sequencing. By combining their “gene essentiality map” with the existing genomic information, their study revealed liabilities in genetically defined subset of cancers that could be exploited for new therapies.

The use of proteasome inhibitors to treat cancer has been greatly limited by the ability of cancer cells to develop resistance to these drugs. But Whitehead Institute researchers have found a mechanism underlying this resistance--a mechanism that naturally occurs in many diverse cancer types and that may expose vulnerabilities to drugs that spur the natural cell-death process.

Whitehead Institute researchers have determined how the master transcriptional regulator of the heat shock response, known as heat shock factor 1 (HSF1), is controlled in yeast. Understanding how HSF1 works, how it is regulated, and how to fine tune it in a cell-type specific way could lead to therapies for cancer and neurodegenerative diseases.

Over the past decade, studies have found that obesity and eating a high-fat, high-calorie diet are significant risk factors for many types of cancer. Now, a new study from Whitehead Institute and MIT’s Koch Institute for Integrative Cancer Research reveals how a high-fat diet makes the cells of the intestinal lining more likely to become cancerous.