Discovery of Genetic Pathways May Provide New Ways to Combat Candida Infections

September 5, 1997

Tags: Fink LabGenetics + GenomicsImmune System

CAMBRIDGE, Mass. — A new study has uncovered the genetic wiring diagram underlying the infectiousness of Candida albicans, a fungus that causes thrush in babies, vaginal infections in women, and life-threatening infections in chemotherapy and AIDS patients. The study, led by Dr. Gerald R. Fink, Director of the Whitehead Institute for Biomedical Research, reveals that one key to Candida's infectiousness lies in its ability to switch from a rounded form to filamentous forms. When the wiring diagram underlying this switch is inactivated, Candida infections are no longer deadly in mice.

The implications of these results for humans are enormous, given that current treatment options for invasive fungal infections are seriously limited. "If we could design drugs that inactivate or block Candida's filamentation pathways, we might be able to fight the organism's insidious and devastating effects on patients with weak immune systems," says Dr. Fink. "Our study also shows that this genetic pathway is a common theme among fungal pathogens and so may provide important insights on how plant and animal pathogens work."

The results are reported in the September 5 issue of the journal Cell by first author Hsiu-Jung Lo and her colleagues from Dr. Fink's lab, Children's Hospital in Boston, MA, and Schering-Plough Research Institute in Kenilworth, NJ.

Using state of the art videomicroscopy techniques, Dr. Fink and his associates recently captured on video the fate of immune cells infected with Candida in a petri dish. When Candida enters a host, the organism is eaten up by cells called macrophages, which are the sentinels of the immune system. But soon, the fungi fight back, switching to a filamentous form and tearing through the macrophage walls, destroying them. Fortunately, in people with healthy bone marrow, other immune system cells called neutrophils come to the rescue to destroy the filamentous Candida. However in patients with weakened immune systems, who lack healthy bone marrow and do not make neutrophils, this second line of attack is not available. In these patients, Candida can take over, as evidenced by the havoc this organism wreaks in patients after chemotherapy.

In Friday's Cell paper, the scientists report that two parallel genetic pathways account for Candida's ability to filament and that inactivating one pathway is not enough to stop filamentation. Inactivating both pathways, on the other hand, renders Candida harmless to both macrophages and mice.


Fungal infections in hospitalized patients have almost doubled throughout the 1980s, often with life-threatening results in individuals with weakened immune systems. Candida, in particular, poses a serious threat and is associated with high mortality rates in patients undergoing chemotherapy. Candida is also a major cause of infection in hospitalized patients, especially those in Intensive Care Units, patients after major injuries or surgery, patients with burns, and premature babies.

Physicians now recognize a real need for new ways to combat these infections; however, finding these new avenues has been a challenge. For one, developing broad spectrum antibiotics against fungi has been difficult. Fungi are more similar to humans than are bacteria, and few anti-fungal agents can kill fungi without harming normal human cells. The drug fluconazole is one of the few antibiotics that works without severe side effects, but increasingly, physicians are encountering fungal strains that are resistant to fluconazole.

Scientists had suspected that one key to Candida's infectiousness may lie in its ability to switch to one of several filamentous forms, but until recently, they had hardly attempted to figure out this wiring diagram because Candida albicans, the most common pathogen, is asexual and therefore intractable for genetic studies. Although common baker's yeast is an excellent system for genetic studies, scientists had never considered it to be a good model for studying fungal disease because they thought yeast couldn't switch to a filamentous form. However, four years ago, Dr. Fink and his colleagues discovered that yeast cells could filament, opening new doors for research into fungal infections.

Yeast as a Model for Candida

In this study, Dr. Fink and his colleagues used molecular biology techniques to identify the components of the filamentation circuit in yeast. With the recently completed yeast genome to guide them, the scientists began to knock out suspicious genes and, by a process of elimination, discovered the culprits that are responsible for filamentation. Once scientists identified the key yeast filamentation genes, they simply plucked out the analogous genes in Candida.

"Candida albicans is three hundred million years apart evolutionarily from yeast&emdash;as far away in evolution as humans are from turtles&emdash;and yet, the basic logic circuit was conserved," says Dr. Fink.

But more work needed to be done before scientists could think about reaping the benefits of this remarkable discovery. The key question was whether preventing filamentation in Candida could render the fungus non-infectious. Scientists began to answer this question using macrophages in petri dish, which are normally ineffective against filamentous Candida. When challenged by Candida strains with both pathways knocked out, macrophages emerged victorious. This was good news to researchers, but the real test would come when the Fink lab scientists, in collaboration with scientists at Schering Plough, began experiments with mice.

In general, Candida infections are lethal in mice, and strains with only one filamentation pathway knocked out are still lethal to mice. But when the scientists infected mice with Candida strains with both pathways knocked out, the mice survived and did not succumb to the infection.

Based on Dr. Fink's work, other scientists at Purdue University have knocked out analogous genes in a strain of fungus that causes disease in rice plants, rendering the fungus harmless. These findings will have implications for agriculture.

The work reported in the Cell paper was supported by grants from the National Institutes of Health and Schering-Plough Research Institute, and a National Research Service Award. Dr. Fink is an American Cancer Society Professor of Genetics.

The title of the Cell paper is "Nonfilamentous C. albicans Mutants are Avirulent." The authors are:

Hsiu-Jung Lo, Whitehead Institute for Biomedical Research, Cambridge, MA

Julia R. Kohler, Whitehead Institute for Biomedical Research, Cambridge, MA, and Children's Hospital, Boston, MA

Beth DiDomenico, Schering-Plough Research Institute, Kenilworth, NJ

David Loebenberg, Schering-Plough Research Institute, Kenilworth, NJ

Anthony Cacciapuoti, Schering-Plough Research Institute, Kenilworth, NJ

Gerald R. Fink, Whitehead Institute for Biomedical Research, Cambridge, MA, and Massachusetts Institute of Technology, Cambridge, MA


Communications and Public Affairs
Phone: 617-258-6851

Whitehead Institute is a world-renowned non-profit research institution dedicated to improving human health through basic biomedical research.
Wholly independent in its governance, finances, and research programs, Whitehead shares a close affiliation with Massachusetts Institute of Technology
through its faculty, who hold joint MIT appointments.

© Whitehead Institute for Biomedical Research              455 Main Street          Cambridge, MA 02142