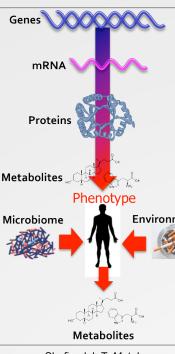
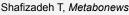
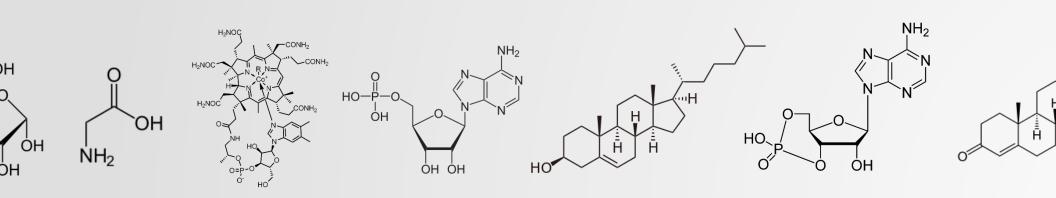
Metabolomics and lipidomics New dimensions in understanding health and disease

Elizaveta (Lisa) Freinkman, Ph.D. Research Scientist & Manager Whitehead Institute Metabolite Profiling Core Facility

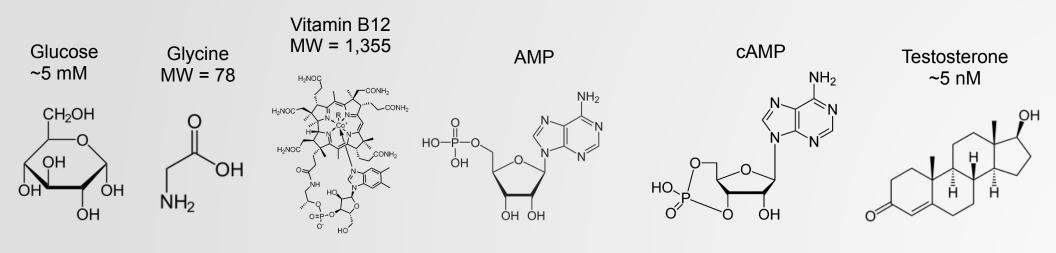

Whitehead Institute Teacher Program Nov. 2, 2015


Outline and learning objectives


- Small molecules and lipids are a key aspect of phenotype
- Measuring small molecules and lipids is challenging because of their extre chemical diversity and wide concentration range
- Liquid chromatography / mass spectrometry (LC/MS) is the single most broadly applicable technology in metabolomics
- Metabolomics is delivering important insights to enable basic disease research, diagnostics, and drug development

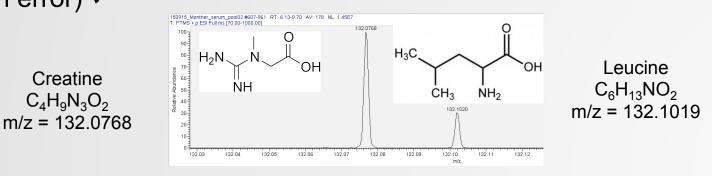
Small molecules & lipids play a key role in biology

- Nutrients e.g., glucose, amino acids, vitamins
- Building blocks e.g., nucleotides, cholesterol
- Signals cAMP, steroid hormones
- Metabolic enzymes and transporters make up ~2000 of the ~20000 genes in the human genome
- Many other genes regulate and sense metabolite levels (without carrying out a chemical reaction)

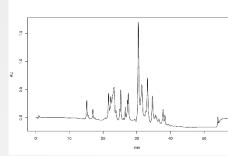


Challenges of small molecule & lipid analysis

- Extreme chemical diversity and specificity
 Compare to DNA/RNA (4 building blocks) and proteins (20 building blocks)
- Wide concentration range
- Not directly encoded in genome
 How many metabolites are there?? Estimates range from 2,000-30,000+

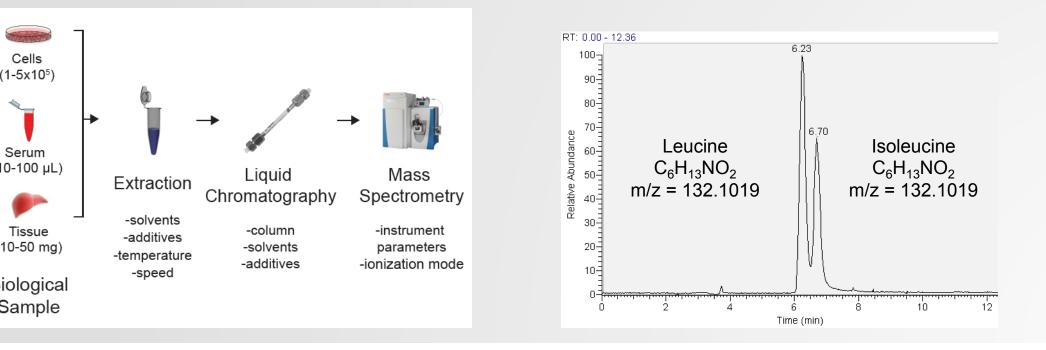


How do we measure small molecules and lipids?


- Enzyme- and antibody-based assays
 - Often quite sensitive, specific, and high-throughput
 - Assay development takes a long time for each metabolite
- Nuclear Magnetic Resonance (NMR)
 - High specificity, low sensitivity (~70 metabolites)
- Ultraviolet (UV) detection
 - Low specificity; requires extensive pre-fractionation & • separation of metabolites

Creatine

- Mass spectrometry (MS)
 - High sensitivity (0.5 pg = 1.3×10^{-15} mol input) \checkmark
 - High specificity (< 5ppm error) \checkmark


LC/MS is the single most versatile metabolite profiling technique

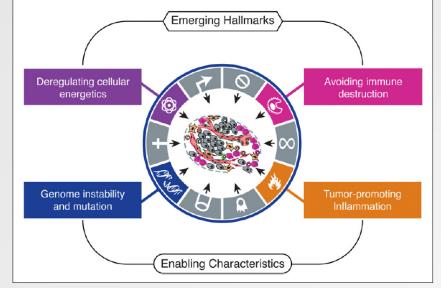
Liquid chromatography (LC) separates isomers

• Ability to choose appropriate conditions for chemically diverse molecules Mass spectrometry (MS) specifically identifies one or a few metabolites

Exact mass and/or fragmentation pattern

Peaks can be integrated to quantitatively measure metabolite levels

Metabolomics in precision biomedicine

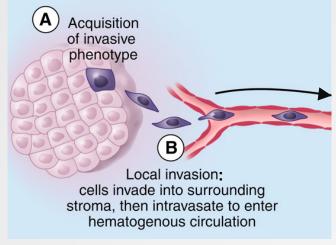

Metabolic processes as targeted ways to attack disease Metabolite profiling as a strategy to personalize medicine

Metabolomics in precision biomedicine

Metabolic processes as targeted ways to attack disease Metabolite profiling as a strategy to personalize medicine

Altered cellular metabolism is an emerging cancer hallmark

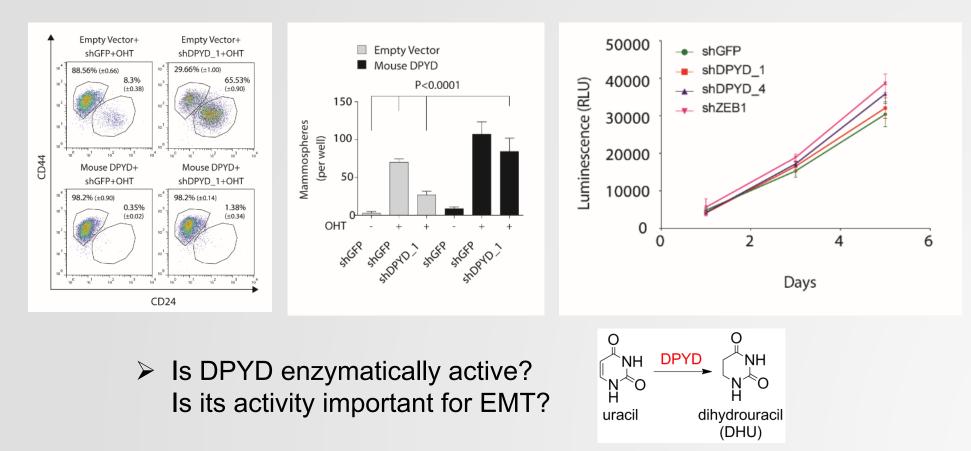
- Provide building blocks for cell growth & division
- Maintain energetic & redox balance
- Modulate transcriptional & epigenetic signals to promote survival & growth



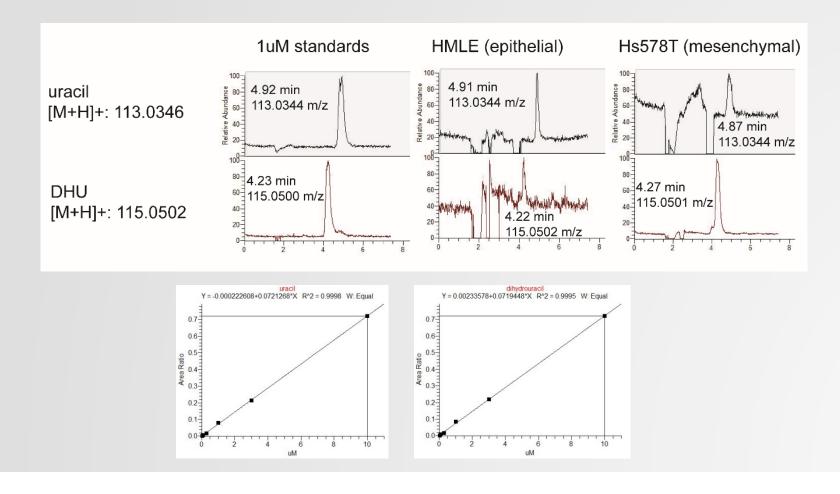
Hanahan and Weinberg, 2011

- Do metabolic changes also enable cancer aggressiveness?
 - Resistance to chemotherapy & other stressors
- $\circ~$ Ability to migrate & seed distant tumors \rightarrow metastasis

Cancer cells can acquire aggressive traits through the epithelial-mesenchymal transition (EMT)

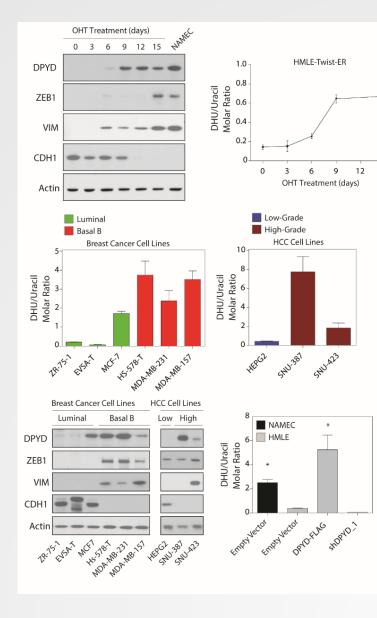

- Normal developmental process reactivated aberrantly in cancer cells
- Loss of polarity & adhesion
- Migration & extravasation
- Resistance to apoptosis
- Ability to seed distant tumors

Chaffer and Weinberg, 2011

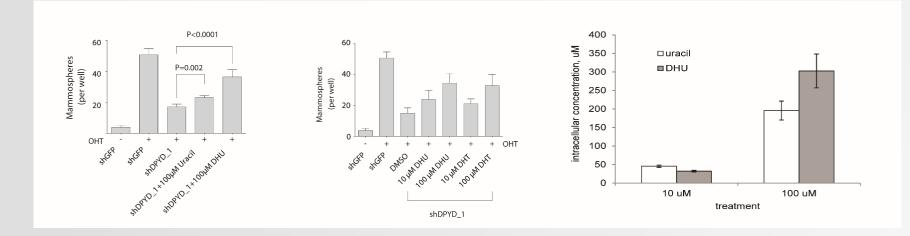

DPYD is a metabolic gene required for EMT

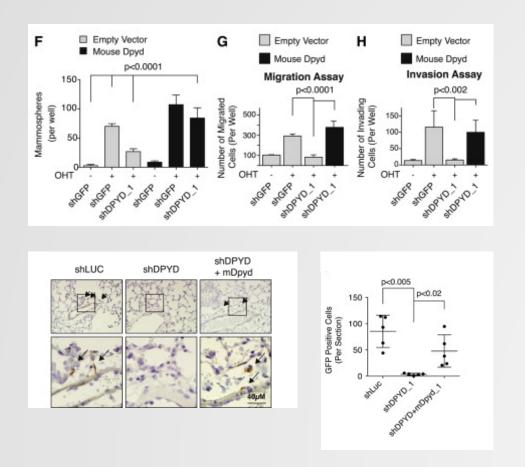
- Identified by gene expression analysis of epithelial- and mesenchymal-like cells
- Used model system in which cultured cells can be induced to undergo EMT
- Knockdown of DPYD inhibits EMT marker expression and mammosphere formation
- Cell proliferation is unaffected

An LC/MS-based assay for DPYD activity in cells


Analysis was challenging because uracil & dihydrouracil abundance is low Excessive cellular material degrades instrument performance over time

DPYD activity increases during EMT


- PYD expression and cellular DHU:uracil atios increase during EMT
- lesenchymal-like cell lines express more PYD and have higher DHU:uracil ratios than pithelial-like counterparts
- xperimentally manipulating DPYD xpression causes commensurate changes in HU:uracil ratios


DPYD products specifically promote EMT

- Dihydropyrimidines added to culture media rescue EMT in DPYD-knockdown cells more potently than pyrimidines
- Both metabolite types accumulate readily inside cells

DPYD promotes invasion & metastatic spread of cancer cells in animals

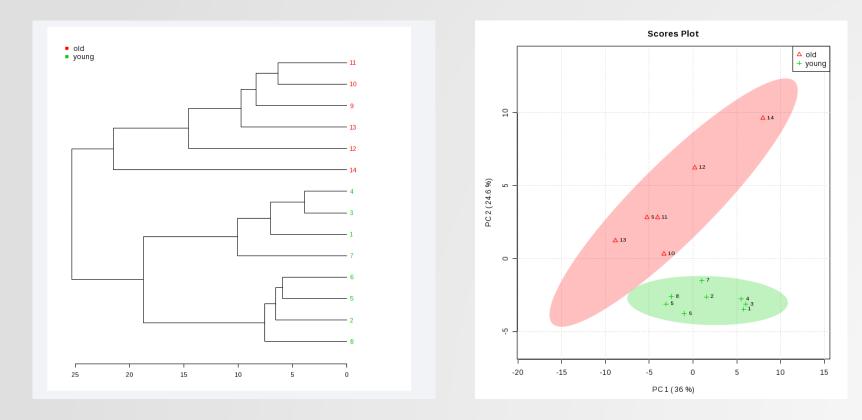
- Clonogenicity, migration, invasion of cultured cells
- Ability to seed lung metastases after tail vein injection in mice

DPYD: conclusions & future directions

- DPYD enzymatic activity and its products are required for carcinoma cells to undergo EMT *in vitro* and *in vivo*
 - First metabolic process required specifically for aggressiveness
- Can pharmacologic inhibition of DPYD prevent or limit metastatic progression?
 - If so, this would not impose a selective pressure on cancer cells to evolve resistance
- Can DPYD expression or product levels serve as a predictive marker for metastasis risk?
- How do DPYD products promote EMT?
- Can other metabolic alterations play a similar role?

Shaul, Freinkman, et al., Cell 2014

Metabolomics in precision biomedicine


- Metabolic processes as targeted ways to attack disease
- Metabolite profiling as a strategy to personalize medicine
 - Finding differences among patients that are important for therapy
 - Disease diagnosis
 - Disease subtype
 - Disease risk

Measure many metabolites and find associations to outcome of interest

- Causal link is often challenging to prove and understand
- Need many measurements and careful controls for statistical significance

se study: Metabolic signature of aging in mammal

- Collaboration with Dr. Monther Abu Remaileh (Sabatini lab)
- Compared blood plasma from aged vs. young mice
- Measured ~150 known polar metabolites
- Young and old mice display distinct metabolomic signatures

Metabolomics in precision medicine: diagnostics

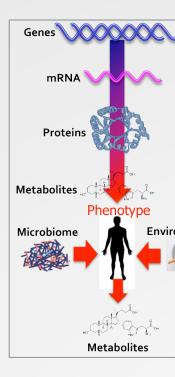
- ividuals with elevated BCAAs ve a 2-fold increased risk of ncreatic cancer diagnosis in owing 2-5 years
- uld this finding lead to an "early rning" diagnostic tool?
- Pancreatic cancer is usually diagnosed too late to treat effectively

medicine 2014, 20(10):1193-8.

Elevation of circulating branched-chain amino acids is an event in human pancreatic adenocarcinoma development

Jared R Mayers^{1,2,23}, Chen Wu^{3-5,23}, Clary B Clish^{6,23}, Peter Kraft^{5,7}, Margaret E Torrence^{1,2}, Brian P Fiske^{1,2}, Chen Yuan⁴, Ying Bao⁸, Mary K Townsend⁸, Shelley S Tworoger^{5,8}, Shawn M Davidson^{1,4} Thales Papagiannakopoulos^{1,2}, Annan Yang⁹, Talya L Dayton^{1,2}, Shuji Ogino^{4,5,10}, Meir J Stampfer^{5,8,11}, Edward L Giovannucci^{5,8,11}, Zhi Rong Qian⁴, Douglas A Rubinson⁴, Jing Ma^{5,8}, Howard D Sesso^{5,12}, John M Gaziano^{12,13}, Barbara B Cochrane¹⁴, Simin Liu^{15,16}, Jean Wactawski-Wende¹⁷, JoAnn E Manson⁵, Michael N Pollak^{18,19}, Alec C Kimmelman⁹, Amanda Souza⁶, Kerry Pierce⁶, Thomas J Wang²⁰, Robert E Gerszten^{6,21}, Charles S Fuchs^{4,8}, Matthew G Vander Heiden^{1,2,4,6} & Brian M Wolpin^{4,22}

For lay-audience synopsis, see: http://scitechdaily.com/biologist-reveal-boost-incertain-amino-acids-is-an-early-sign-of-cancer/


Metabolomics in precision medicine: drug safety

- Identification of drug metabolites for safety testing (pharmacodynamics) Required for FDA approval
- Specific urine metabolites as early predictors of drug-induced liver injury
- .H. Winnike et al., Clinical Pharmacology & Therapeutics, 2010
- Microbiome-specific differences that affect drug metabolism
- A. Clayton et al., Proceedings of the National Academy of Sciences, 2009

Summary

letabolomics is a key, emerging "omics" technology

- Complementary to genomics, transcriptomics and proteomics
- letabolomics is contributing important insights throughout ne biomedical research process
- Basic research on disease mechanisms & signatures
- Disease risk and diagnosis
- Drug safety and efficacy

Acknowledgments

David M. Sabatini

Michael Pacold Tenzin Kunchok

<u>Collaborators cited:</u> Yoav Shaul Monther Abu Remaileh <u>Admin/technical support:</u> Edie Valeri Kathleen Ottina

freinkm@wi.mit.edu metabolomics.wi.mit.edu Whitehead Institute