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Global temperatures continue setting records
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Global temperatures continue setting records
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$billion disasters

(not cost!)
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$billion disasters

Wildfire

Drought

Wildfire /
Drought (tie)

Severe Storms

Winter Storms

Tropics
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Global temperatures directly linked to atmospheric CO;

World CO2 Emissions

United States




Highest US emissions from transportation
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Highest US emissions from transportation
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Highest US emissions from transportation
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Internal combustion fleet will predominate indefinitely
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EPA Renewable Fuel Standard (2007)
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Growing gap. Energy legislation from 2007 mandates an increasing share of
cellulosic ethanol (dark green). But the industry is already falling behind.




EPA Renewable Fuel Standard (2007)

40 T
Biomass-based diesel
35 7 Non-cellulosic advanced
30 - B Cellulosic advanced
Conventional biofuels

25 -

20 A
. .zuil
1 corn (15B gal)

Billions of gallons

10 ~

5 .

0

_— LA A A a2 a2 a2

Growing gap. Energy legislation from 2007 mandates an increasing share of
cellulosic ethanol (dark green). But the industry is already falling behind.

el

biomass




Biomass as Feedstock for a
Bioenergy and Bioproducts Industry:
The Technical Feasibility of a
Billion-Ton Annual Supply

ligho-
cellulosic

biomass
(~1B ton / yr)
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EPA Renewable Fuel Standard (2007)
U.S. BIOFUEL!
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included in the country’s fuel supply. In its
early years, the law emphasized the produc- 0

ll o tion of corn ethanol, considered ripe for early o o
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Yet corn ethanol comes with problems. It & < 3

offers only modest savings in greenhouse-gas

e 4 emissions compared to petrol (see Nature 499, . . . . .

lg tS Or l e 13-14; 2013). Production s vulnerable to poor Growing gap. Energy legislation from 2007 mandates an increasing share of
harv nd can contribu increased food . o 5 5 .
prices because the maize must be grown on cellulosic ethanol (dark green)./BUttheindustry is already falling behind:

land that would otherwise be used for food.

Ploneenng. biofuel prqducerg hope that US government Tapping the storehouse of biomass left after
larg esse will ease their way mtoa tOug h market. the harvest is much less controversial. Ethanol

made from corn stover produces at least 60%

less greenhouse-gas emissions than petrol, and

BY MARK PEPLOW by DuPont). The industry has long promised = making it does not require any extra farmland.
that this second-generation biofuel will
O n the flat plains of Kansas, a stack  greenhouse-gas emissions, reduce US reli:

of gleaming steel towers and pipes onimported oil and boost rural economies M I I
stretches 16 storeys into the sky. More  just as the fuel is on the cusp of making it

than 1,000 construction workers toiled to  market forces and government policies c T h I
complete the ethanol plant near the town of ~ choke its progress. “This is going to be a ec n o og y
-

- Review
ligno-

: The Cellulosic Ethanol Industry Faces Big
cellulosic Challenges

b I O m as S The advanced-biofuels industry is in danger of withering away.
(~1 B t O n / y r) By Kevin Bullis on August 12, 2013

A series of cellulosic-biofuel plants are finally starting to come on line after years of delay. But the =w
wave of plant openings, good news as it is for the emerging industry, also shows just how far it still has
to go.
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Origin of ethanol tolerance unknown

Yeast

Yeast 2006; 23: 351 -359.

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/yea.|359 g L T S —

DOI: 10.1534/genetics.110.121871

Research Article

Genome-wide identification of genes required for Exploiting Natural Variation in Saccharomyces cerevisiae to Identify Genes
growth of Saccharomyces cerevisiae under ethanol for Increased Ethanol Resistance
stress

Jeffrey A. Lewis,*" Isaac M. Elkon,*" Mick A. McGee,"* Alan ]J. Higbee'

*,1.8,1
Frank van Voorst, Jens Houghton-Larsen, Lars Jonson®, Morten C. Kielland-Brandt and Anders Brandt* and Audrey P. Gasch

Carisberg Laboratory, Gamle Carisberg Vej 10, DK-2500 Copenhagen Valby, Denmark * Laboratory of Genetics, ' Great Lakes Bioenergy Research Center, *Biotechnology Center, and ®Genome Center of Wisconsin,
University of Wisconsin, Madison, Wisconsin 53706

Manuscript received August 5, 2010

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 2003, p. 1499-1503 Vol. 69, No. 3
0099-2240/03/$08.00+0 DOI: 10.1128/ AEM.69.3.1499-1503.2003
Copyright © 2003, American Society for Microbiology. All Rights Reserved.

Ethanol Tolerance in the Yeast Saccharomyces cerevisiae Is Dependent
on Cellular Oleic Acid Content

w
Kyung Man You,{ Claire-Lise Rosenfield, and Douglas C. Knipple* ﬂﬂj}j}
Department of Entomology, Cornell University, New York State Agricultural Experiment Station, o
Geneva, New York 14456 RESEARCH ARTICLE

Trehalose promotes the survival of Saccharomyces cerevisiae during
lethal ethanol stress, but does not influence growth under sublethal
ethanol stress

Ajith Bandara', Sarah Fraser’, Paul J. Chambers® & Grant A. Stanley’

'School of Engineering and Science, Victoria University, Melbourne, Vic., Australia; and “The Australian Wine Research Institute, Glen Osmond, SA,
Australia




Ethanol disrupts membranes — environmental ions affect stability?

C ) (Cl)

Extracellular

ethanol interacts / #EFANGSReNpeatwsecc 2™  oxternal ions
disrupts lipids... counteract?




Only external K* and pH counteract = boost ethanol output

| YSC = yeast culturing medium

YSC +50 mM KH2PO4 (K-7)

YSC +40 mM KCI +10 mM KU

YSC +50 mM “2S04

* statistically identical

AoAe ...raising pH gives further boost

YSC +50 mM Na2S03

0 0.5 1 1.5 2
Relative ethanol production

Largest increase from potassium (K+) salts...



Elevated K*/pH boost cell tolerance — NOT ethanol made per-cell
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Despite higher ethanol, K*/pH enhance:

® Cell growth (moderately)
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Elevated K*/pH boost cell tolerance — NOT ethanol made per-cell

[g/L]

140 Ethanol VIABLE cell density
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Despite higher ethanol, K*/pH enhance:

® Cell growth (moderately)
® Tolerance



Elevated K*/pH boost cell tolerance — NOT ethanol made per-cell

Ethanol Cell density
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Elevated K*/pH boost cell tolerance — NOT ethanol made per-cell

Ethanol

100

20




Elevated K*/pH boost cell tolerance — NOT ethanol made per-cell

Ethanol VIABLE cell density
100 | 357
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Elevated K*/pH boost cell tolerance — NOT ethanol made per-cell

Ethanol VIABLE cell density
100 | 357

+K+/pH Time [h]



External K*/pH directly control ethanol tolerance and production

—4-YSC
—4—+5 mM KCI

—+—+10 mM KCI
——+25 mM KCI
+50 mM KCI
+100 mM KCI
+5 mM KOH
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——+5 mM KOH +45 mM KCI
——+5 mM KOH +95 mM KCI
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® Ethanol production
per-cell remains
same

® Only population
tolerance /
endurance is varied
— directly determines
ethanol produced



K*/pH control yeast tolerance to ethanelt many alcohols
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Why K*/pH specifically! Form gradients of yeast membrane potential

Normally:

|. H*and K* membrane pumps maintain:
Internal [pH 7 + high K*]

External [pH 3 + low K]
— H* /K* gradients charge membrane




Why K*/pH specifically! Form gradients of yeast membrane potential

Normally:

|. H*and K* membrane pumps maintain:
Internal [pH 7 + high K*]

External [pH 3 + low K]
— H* /K* gradients charge membrane

When ethanol accumulates:

2. Membrane becomes permeable to H*
and K* — ijons leak




Why K*/pH specifically! Form gradients of yeast membrane potential

- SOH H+
oH 7 ~or oH 2-3
—_—
R+ -~ 0OH ;
K+ ~on K R
OH
oH . )
K+ H+ ~"OH i
B —
K+ H+

Normally:

|. H*and K* membrane pumps maintain:
Internal [pH 7 + high K*]

External [pH 3 + low K]
— H* /K* gradients charge membrane

When ethanol accumulates:

2. Membrane becomes permeable to H*
and K* = ijons leak @ membrane
gradients dissipate — cell death



Why K*/pH specifically! Form gradients of yeast membrane potential

Normally:

|. H*and K* membrane pumps maintain:
Internal [pH 7 + high K*]
External [pH 3 + low K]

— H* /K* gradients charge membrane

When ethanol accumulates:

2. Membrane becomes permeable to H*
and K* = ijons leak = membrane
gradients dissipate — cell death

Increasing external K*/pH.:

3. Assists membrane pumps with re-
establishing gradients

4. Membrane charge is restored
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Inhibitors universal to all lignocellulosic sources
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Alcohol forms of furfural, HMF less toxic — respond to K+/pH
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Can we engineer this conversion within yeast?
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Reductase GRE2 enhances conversion of furfural HMF

6 g/L furfural +
6 g/L HMF
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GRE2¢evol combined with K*/pH robustly ferments genuine feedstocks’

* All genuine feedstocks
low In toxicity —
toxification with furfural,
HMF (and sugar) required

No toxicity (control) - WT
Toxified - WT

Toxified +K+/pH - WT
Toxified +K+/pH - GRE2evo!

75% DMR

High acid
Corn stover Corn stover Corn stover

110] =1

100 | : -

80 1
-
[
S 60 -
g
49

— —
20 -
YSC (lab medium) — Single strain

0 12 24 36 48

Switchgrass Miscanthus Wheat straw Bagasse

- handles
diversity of
— Matches performance cellulosic
in “clean sugar” feedstocks

Ethanol [g/L]
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GRE2¢evol and K+/pH applied to production of bio=plastic precursor

No toxicity (control) - WT
Toxified - WT

Toxitied +K+/pH - WT
Toxified +K+/pH - GRE2evol

YSC

65% DMR
Corn stover

o ¢

S — Single strain

33 : : :
© — Diversity of cellulosic
3 feedstocks
3 — Matches “clean sugar”
= GRE™pH e Performance

0 10 20 30 40 50 60 70
Lactic acid [g/L]
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biodiesel
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