Scientific Papers

For more papers, visit a faculty member's page from the listing on Whitehead Faculty and access the PubMed link.

On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics.

Nat Protoc. 2017 May;12(5):865-880.

Chen, M.B., Whisler, J.A., Frose, J.*, Yu, C., Shin, Y., and Kamm, R.D.

Distant metastasis, which results in >90% of cancer-related deaths, is enabled by hematogenous dissemination of tumor cells via the circulation. This requires the completion of a sequence of complex steps including transit, initial arrest, extravasation, survival and proliferation. Increased understanding of the cellular and molecular players enabling each of these steps is key to uncovering new opportunities for therapeutic intervention during early metastatic dissemination. As a protocol extension, this article describes an adaptation to our existing protocol describing a microfluidic platform that offers additional applications. This protocol describes an in vitro model of the human microcirculation with the potential to recapitulate discrete steps of early metastatic seeding, including arrest, transendothelial migration and early micrometastases formation. The microdevice features self-organized human microvascular networks formed over 4-5 d, after which the tumor can be perfused and extravasation events are easily tracked over 72 h via standard confocal microscopy. Contrary to most in vivo and in vitro extravasation assays, robust and rapid scoring of extravascular cells, combined with high-resolution imaging, can be easily achieved because of the confinement of the vascular network to one plane close to the surface of the device. This renders extravascular cells clearly distinct and allows tumor cells of interest to be identified quickly as compared with those in thick tissues. The ability to generate large numbers of devices (approximately 36) per experiment further allows for highly parametric studies, which are required when testing multiple genetic or pharmacological perturbations. This is coupled with the capability for live tracking of single-cell extravasation events, allowing both tumor and endothelial morphological dynamics to be observed in high detail with a moderate number of data points.

 

mTOR signaling in growth, metabolism, and disease.

Cell. 2017 Apr 6;169(2):361-371.

Saxton, R.A.*, and Sabatini, D.M.*

The mechanistic target of rapamycin (mTOR) coordinates eukaryotic cell growth and metabolism with environmental inputs, including nutrients and growth factors. Extensive research over the past two decades has established a central role for mTOR in regulating many fundamental cell processes, from protein synthesis to autophagy, and deregulated mTOR signaling is implicated in the progression of cancer and diabetes, as well as the aging process. Here, we review recent advances in our understanding of mTOR function, regulation, and importance in mammalian physiology. We also highlight how the mTOR signaling network contributes to human disease and discuss the current and future prospects for therapeutically targeting mTOR in the clinic.

 

Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register.

Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3642-3647

Frederick, K.K.*, Michaelis, V.K., Caporini, M.A., Andreas, L.B., Debelouchina, G.T., Griffin, R.G., and Lindquist, S.*

The yeast prion protein Sup35NM is a self-propagating amyloid. Despite intense study, there is no consensus on the organization of monomers within Sup35NM fibrils. Some studies point to a beta-helical arrangement, whereas others suggest a parallel in-register organization. Intermolecular contacts are often determined by experiments that probe long-range heteronuclear contacts for fibrils templated from a 1:1 mixture of 13C- and 15N-labeled monomers. However, for Sup35NM, like many large proteins, chemical shift degeneracy limits the usefulness of this approach. Segmental and specific isotopic labeling reduce degeneracy, but experiments to measure long-range interactions are often too insensitive. To limit degeneracy and increase experimental sensitivity, we combined specific and segmental isotopic labeling schemes with dynamic nuclear polarization (DNP) NMR. Using this combination, we examined an amyloid form of Sup35NM that does not have a parallel in-register structure. The combination of a small number of specific labels with DNP NMR enables determination of architectural information about polymeric protein systems. 

  

Three-dimensional culture system identifies a new mode of cetuximab resistance and disease-relevant genes in colorectal cancer.

Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):E2852-E2861

Li, C., Singh, B., Graves-Deal, R., Ma, H.*, Starchenko, A., Fry, W.H., Lu, Y., Wang, Y., Bogatcheva, G., Khan, M.P., Milne, G.L., Zhao, S., Ayers, G.D., Li, N., Hu, H., Washington, M.K., Yeatman, T.J., McDonald, O.G., Liu, Q., Coffey, R.J.

We previously reported that single cells from a human colorectal cancer (CRC) cell line (HCA-7) formed either hollow single-layered polarized cysts or solid spiky masses when plated in 3D in type-I collagen. To begin in-depth analyses into whether clonal cysts and spiky masses possessed divergent properties, individual colonies of each morphology were isolated and expanded. The lines thus derived faithfully retained their parental cystic and spiky morphologies and were termed CC (cystic) and SC (spiky), respectively. Although both CC and SC expressed EGF receptor (EGFR), the EGFR-neutralizing monoclonal antibody, cetuximab, strongly inhibited growth of CC, whereas SC was resistant to growth inhibition, and this was coupled to increased tyrosine phosphorylation of MET and RON. Addition of the dual MET/RON tyrosine kinase inhibitor, crizotinib, restored cetuximab sensitivity in SC. To further characterize these two lines, we performed comprehensive genomic and transcriptomic analysis of CC and SC in 3D. One of the most up-regulated genes in CC was the tumor suppressor 15-PGDH/HPGD, and the most up-regulated gene in SC was versican (VCAN) in 3D and xenografts. Analysis of a CRC tissue microarray showed that epithelial, but not stromal, VCAN staining strongly correlated with reduced survival, and combined epithelial VCAN and absent HPGD staining portended a poorer prognosis. Thus, with this 3D system, we have identified a mode of cetuximab resistance and a potential prognostic marker in CRC. As such, this represents a potentially powerful system to identify additional therapeutic strategies and disease-relevant genes in CRC and possibly other solid tumors.

 

LACTB is a tumour suppressor that modulates lipid metabolism and cell state.

Nature. 2017 Mar 30;543(7647):681-686.

Keckesova, Z.*, Donaher, J.L.*, De Cock, J.*, Freinkman, E.*, Lingrell, S., Bachovchin, D.A., Bierie, B.*, Tischler, V., Noske, A., Okondo, M.C., Reinhardt, F.*, Thiru, P.*, Golub, T.R., Vance, J.E., and Weinberg, R.A.*

Post-mitotic, differentiated cells exhibit a variety of characteristics that contrast with those of actively growing neoplastic cells, such as the expression of cell-cycle inhibitors and differentiation factors. We hypothesized that the gene expression profiles of these differentiated cells could reveal the identities of genes that may function as tumour suppressors. Here we show, using in vitro and in vivo studies in mice and humans, that the mitochondrial protein LACTB potently inhibits the proliferation of breast cancer cells. Its mechanism of action involves alteration of mitochondrial lipid metabolism and differentiation of breast cancer cells. This is achieved, at least in part, through reduction of the levels of mitochondrial phosphatidylserine decarboxylase, which is involved in the synthesis of mitochondrial phosphatidylethanolamine. These observations uncover a novel mitochondrial tumour suppressor and demonstrate a connection between mitochondrial lipid metabolism and the differentiation program of breast cancer cells, thereby revealing a previously undescribed mechanism of tumour suppression.

  

A phase separation model for transcriptional control.

Cell. 2017 Mar 23;169(1):13-23.

Hnisz, D.*, Shrinivas, K., Young, R.A.*, Chakraborty, A.K., and Sharp, P.A.

Phase-separated multi-molecular assemblies provide a general regulatory mechanism to compartmentalize biochemical reactions within cells. We propose that a phase separation model explains established and recently described features of transcriptional control. These features include the formation of super-enhancers, the sensitivity of super-enhancers to perturbation, the transcriptional bursting patterns of enhancers, and the ability of an enhancer to produce simultaneous activation at multiple genes. This model provides a conceptual framework to further explore principles of gene control in mammals.

 

An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model.

Sci Rep. 2017 Mar 21;7(1):252.

Chahal, J.S., Fang, T., Woodham, A.W., Khan, O.F., Ling, J., Anderson, D.G., and Ploegh, H.L.*

The Zika virus (ZIKV) outbreak in the Americas and South Pacific poses a significant burden on human health because of ZIKV's neurotropic effects in the course of fetal development. Vaccine candidates against ZIKV are coming online, but immunological tools to study anti-ZIKV responses in preclinical models, particularly T cell responses, remain sparse. We deployed RNA nanoparticle technology to create a vaccine candidate that elicited ZIKV E protein-specific IgG responses in C57BL/6 mice as assayed by ELISA. Using this tool, we identified a unique H-2Db-restricted epitope to which there was a CD8+ T cell response in mice immunized with our modified dendrimer-based RNA nanoparticle vaccine. These results demonstrate that this approach can be used to evaluate new candidate antigens and identify immune correlates without the use of live virus.

  

Integrin-beta4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells.

Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2337-E2346.

Bierie, B.*, Pierce, S.E., Kroeger, C.*, Stover, D.G., Pattabiraman, D.R.*, Thiru, P.*, Liu Donaher, J.*, Reinhardt, F.*, Chaffer, C.L.*, Keckesova, Z.*, and Weinberg, R.A.*

Neoplastic cells within individual carcinomas often exhibit considerable phenotypic heterogeneity in their epithelial versus mesenchymal-like cell states. Because carcinoma cells with mesenchymal features are often more resistant to therapy and may serve as a source of relapse, we sought to determine whether such cells could be further stratified into functionally distinct subtypes. Indeed, we find that a basal epithelial marker, integrin-beta4 (ITGB4), can be used to enable stratification of mesenchymal-like triple-negative breast cancer (TNBC) cells that differ from one another in their relative tumorigenic abilities. Notably, we demonstrate that ITGB4+ cancer stem cell (CSC)-enriched mesenchymal cells reside in an intermediate epithelial/mesenchymal phenotypic state. Among patients with TNBC who received chemotherapy, elevated ITGB4 expression was associated with a worse 5-year probability of relapse-free survival. Mechanistically, we find that the ZEB1 (zinc finger E-box binding homeobox 1) transcription factor activity in highly mesenchymal SUM159 TNBC cells can repress expression of the epithelial transcription factor TAp63alpha (tumor protein 63 isoform 1), a protein that promotes ITGB4 expression. In addition, we demonstrate that ZEB1 and ITGB4 are important in modulating the histopathological phenotypes of tumors derived from mesenchymal TNBC cells. Hence, mesenchymal carcinoma cell populations are internally heterogeneous, and ITGB4 is a mechanistically driven prognostic biomarker that can be used to identify the more aggressive subtypes of mesenchymal carcinoma cells in TNBC. The ability to rapidly isolate and mechanistically interrogate the CSC-enriched, partially mesenchymal carcinoma cells should further enable identification of novel therapeutic opportunities to improve the prognosis for high-risk patients with TNBC.

 

Planarian epidermal stem cells respond to positional cues to promote cell-type diversity.

Dev Cell. 2017 Mar 13;40(5):491-504.e5.

Wurtzel, O.*, Oderberg, I.M.*, and Reddien, P.W.*

Successful regeneration requires that progenitors of different lineages form the appropriate missing cell types. However, simply generating lineages is not enough. Cells produced by a particular lineage often have distinct functions depending on their position within the organism. How this occurs in regeneration is largely unexplored. In planarian regeneration, new cells arise from a proliferative cell population (neoblasts). We used the planarian epidermal lineage to study how the location of adult progenitor cells results in their acquisition of distinct functional identities. Single-cell RNA sequencing of epidermal progenitors revealed the emergence of distinct spatial identities as early in the lineage as the epidermal neoblasts, with further pre-patterning occurring in their post-mitotic migratory progeny. Establishment of dorsal-ventral epidermal identities and functions, in response to BMP signaling, required neoblasts. Our work identified positional signals that activate regionalized transcriptional programs in the stem cell population and subsequently promote cell-type diversity in the epidermis.

  

Super-enhancer-mediated RNA processing revealed by integrative microRNA network analysis.

Cell. 2017 Mar 9;168(6):1000-1014.

Suzuki, H.I., Young, R.A.*, and Sharp, P.A.

Super-enhancers are an emerging subclass of regulatory regions controlling cell identity and disease genes. However, their biological function and impact on miRNA networks are unclear. Here, we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-miRNA) processing. Super-enhancers, together with broad H3K4me3 domains, shape a tissue-specific and evolutionarily conserved atlas of miRNA expression and function. CRISPR/Cas9 genomics revealed that super-enhancer constituents act cooperatively and facilitate Drosha/DGCR8 recruitment and pri-miRNA processing to boost cell-specific miRNA production. The BET-bromodomain inhibitor JQ1 preferentially inhibits super-enhancer-directed cotranscriptional pri-miRNA processing. Furthermore, super-enhancers are characterized by pervasive interaction with DGCR8/Drosha and DGCR8/Drosha-regulated mRNA stability control, suggesting unique RNA regulation at super-enhancers. Finally, super-enhancers mark multiple miRNAs associated with cancer hallmarks. This study presents principles underlying miRNA biology in health and disease and an unrecognized higher-order property of super-enhancers in RNA processing beyond transcription.

 

 

*Author affiliated with Whitehead Institute for Biomedical Research

© Whitehead Institute for Biomedical Research              455 Main Street          Cambridge, MA 02142