Research Achievements

Whitehead Institute research has delivered new understandings to fundamental problems in biomedicine and transformed the landscape of contemporary biology.

Over the years, Institute scientists have focused on human genetics, cancer, heart disease, immunology, and developmental biology. Whitehead was the core institution for one of the six original National Cooperative Vaccine Development Groups for AIDS (established by the National Institutes of Health to speed the development of an AIDS vaccine).

By the mid-1990s, the Whitehead/MIT Center for Genome Research emerged as the leading center for the newly organized U.S. Human Genome Project. The Center made the single largest contribution to the completion of the project by sequencing one-third of the reference human genome.

In recent years, Institute scientists have been recognized for their advances in stem cell research, protein folding, cancer stem cells, regenerative biology, disease modeling, non-coding RNAs and more.

For a glimpse at Whitehead contributions to these and other fields, click on the topical tabs above.


Cancer

Images of tissue sections from breast cancer patient biopsies

July 31, 2014

Master heat-shock factor supports reprogramming of normal cells to enable tumor growth and metastasis

Long associated with enabling the proliferation of cancer cells, the ancient cellular survival response regulated by Heat-Shock Factor 1 (HSF1) can also turn neighboring cells in their environment into co-conspirators that support malignant progression and metastasis.


 


Genetics + Genomics

Diagram of pseudouridylation of mRNA

September 15, 2014

Scientists discover RNA modifications in some unexpected places

Deploying sophisticated high-throughput sequencing technology, dubbed ψ-seq, a team of Whitehead Institute and Broad Institute researchers collaborated on a comprehensive, high-resolution mapping of ψ sites that confirms pseudouridylation, the most common post-transcriptional modification, does indeed occur naturally in mRNA.


Immune System

Microscope image of filamentation in Candida albicans with and without amphotericin B resistance

October 29, 2013

Understanding the evolution of drug resistance points to novel strategy for developing better antimicrobials

The most common fungal pathogen in humans, Candida albicans, rarely develops resistance to the antifungal drug amphotericin B (AmB).  This has been puzzling as the drug has been in clinical use for over 50 years. Whitehead Institute scientists have now discovered why.  The genetic mutations that enable certain strains of C. albicans to resist AmB simultaneously render it highly susceptible to environmental stressors and disarm its virulence factors.

Nervous System
Development + Function

Image of cells affected and unaffected by NPC gene mutation

May 15, 2014

Combination therapy a potential strategy for treating Niemann-Pick disease

Whitehead Institute researchers have identified a potential dual-pronged approach to treating Niemann-Pick type C (NPC) disease, a rare but devastating genetic disorder. By studying nerve and liver cells grown from NPC patient-derived induced pluripotent stem cells (iPSCs), the scientists determined that although cholesterol does accumulate abnormally in the cells of NPC patients, a more significant problem may be defective autophagy—a basic cellular function that degrades and recycles unneeded or faulty molecules, components, or organelles in a cell. Here, the scientists propose two drugs, one to reduce cholesterol buildup and the other to induce autophagy, as a strategy for treating NPC.


Protein Function

Diagram of the Sestrins' role in mTORC1 regulation

September 25, 2014

New protein players found in key disease-related metabolic pathway

Cells rely on the mechanistic target of rapamycin complex 1 (mTORC1) pathway—which senses the availability of nutrients—to coordinate their growth with existing environmental conditions. The lab of Whitehead Member David Sabatini has identified a family of proteins that negatively regulate the branch upstream of mTORC1 that senses amino acids, the building blocks of proteins.

Stem Cells +
Therapeutic Cloning

Diagram of reprogramming factors in SNEL

September 4, 2014

New reprogramming factor cocktail produces therapy-grade induced pluripotent stem cells

Induced pluripotent stem cells (iPSCs) may hold the potential to cure damaged nerves, regrow limbs and organs, and perfectly model a patient’s particular disease. Yet these cells can acquire serious genetic and epigenetic abnormalities that lower the cells’ quality and limit their therapeutic usefulness. Now Whitehead Institute researchers have identified a cocktail of reprogramming factors that produces very high quality iPSCs.

© Whitehead Institute for Biomedical Research         Nine Cambridge Center    Cambridge, MA 02142