Tag: Stem Cells + Therapeutic Cloning

Schematic showing nerve cells and person with Parkinson's disease within a yeast cell

Yeast, human stem cells drive discovery of new Parkinson’s disease drug targets

October 24, 2013

Using a discovery platform whose components range from yeast cells to human stem cells, Whitehead Institute scientists have identified a novel Parkinson’s disease drug target and a compound capable of repairing neurons derived from Parkinson’s patients.

Images of the activity of the follistatin gene in a planarian after its head and tail were cut off

Tissue loss triggers regeneration in planarian flatworms

September 3, 2013

By investigating regeneration in planarian flatworms, Whitehead Institute researchers have identified a mechanism—involving the interplay of two wound-induced genes—by which the animal can distinguish between wounds that require regeneration and those that do not.

Image of cells with reporters added using CRISPR/Cas

CRISPR/Cas genome engineering system generates valuable conditional mouse models

August 29, 2013

Whitehead Institute researchers have used the gene regulation system CRISPR/Cas (for “clustered regularly interspaced short palindromic repeat/CRISPR-associated) to engineer mouse genomes containing reporter and conditional alleles in one step. Animals containing such sophisticated engineered alleles can now be made in a matter of weeks rather than years and could be used to model diseases and study gene function.

Daigram of enzyme used in CRISPR-on

Novel approach to gene regulation can activate multiple genes simultaneously

August 27, 2013

By creating a powerful new gene regulation system called CRISPR-on, Whitehead Institute researchers now have the ability to increase the expression of multiple genes simultaneously and precisely manipulate each gene’s expression level. The system is effective in both mouse and human cells as well as in mouse embryos.

Slide showing planarian muscle cells expressing 19 position control genes

In regenerating planarians, muscle cells provide more than heavy lifting

August 15, 2013

By studying the planarian flatworm, a master of regenerating missing tissue and repairing wounds, the lab of Whitehead Institute Member Peter Reddien has identified an unexpected source of position instruction: the muscle cells in the planarian body wall. This is the first time that such a positional control system has been identified in adult regenerative animals.

Image showing difference in Nanog markers

Study challenges long-held assumption of gene expression in embryonic stem cells

July 3, 2013

Whitehead Institute researchers have determined that the transcription factor Nanog, which plays a critical role in maintaining the self-renewal of embryonic stem cells, is expressed in a manner similar to other pluripotency markers.

Image: Glucocorticoids stimulates the production of ZFP36l2, which promotes the self-renewal of BFU-Es.

Scientists identify potential drug target for treatment-resistant anemias

June 9, 2013

Researchers at Whitehead Institute have identified a key target protein of glucocorticoids, the drugs that are used to increase red blood cell production in patients with certain types of anemia, including those resulting from trauma, sepsis, malaria, kidney dialysis, and chemotherapy.

Image: Proposed Skolkovo Institute buildings

Whitehead Members to help establish international stem cell research center

October 1, 2012

Three Members of the Whitehead Institute faculty are poised to play significant roles in the establishment of a new stem cell research center based at Skolkovo Institute of Science and Technology (Skolkovo Tech) in suburban Moscow.

Image of mouse embryonic fibroblasts undergoing reprogramming

Whitehead scientists bring new efficiency to stem cell reprogramming

September 13, 2012

New genetic markers identified by researchers at Whitehead Institute and MIT could help make the process for reprogramming regular body cells into pluripotent stem cells more efficient, allowing scientists to predict which treated cells will successfully become pluripotent.

Image of induced embryonic Sertoli-like cells in the fetal male mouse gonad

Scientists create germ cell-supporting embryonic Sertoli-like cells from skin cells

September 6, 2012

Using a stepwise trans-differentiation process, Whitehead Institute researchers have turned skin cells into embryonic Sertoli-like cells.

Images of planarians, one with eye spots and one missing eye spots due to repression of the ovo gene

Planarians offer a better view of eye development

August 2, 2012

Whitehead Institute researchers have created a complete catalog of genes active in the planarian eye. Several identified genes are known to have versions that play a role in the vertebrate eye, including genes involved in eye development and others associated with age-related macular degeneration and Usher syndrome, a disorder that causes progressive retinal degradation.

Microscope image of cNeoblast colonies in an adult planarian

Planarian genes that control stem cell biology identified

March 1, 2012

Despite their unassuming appearance, the planarian flatworms in Whitehead Institute Member Peter Reddien's lab are revealing powerful new insights into the biology of stem cells—insights that may eventually help such cells deliver on a promising role in regenerative medicine.

Pages

© Whitehead Institute for Biomedical Research              455 Main Street          Cambridge, MA 02142