Tag: Lindquist Lab

Whitehead Member Susan Lindquist

Whitehead’s Susan Lindquist named a Moore Distinguished Scholar at Caltech

December 8, 2015

Established in 2000 by Intel co-founder Gordon Moore and his wife Betty, the Moore Distinguished Scholars Program invites researchers of exceptional quality who are acclaimed at both the national and international levels to visit Caltech for a designated period of time. 

Diagram of antiparallel beta-sheet structure of the enzyme catalase

Enhanced-sensitivity NMR could reveal clues on how proteins fold

October 8, 2015

Until now, it has been difficult to fully characterize the different structures that proteins can take on in their natural environments. However, using a new technique known as sensitivity-enhanced nuclear magnetic resonance (NMR), Whitehead Institute and MIT researchers have shown that they can analyze the structure that a yeast protein forms as it interacts with other proteins in a cell.

Slides of tagged cells

Cellular recycling complexes may hold key to chemotherapy resistance

September 2, 2015

Upsetting the balance between protein synthesis, misfolding, and degradation drives cancer and neurodegeneration. Recent cancer treatments take advantage of this knowledge with a class of drugs that block protein degradation, known as proteasome inhibitors. Widespread resistance to these drugs limits their success, but Whitehead researchers have discovered a potential Achilles heel in resistance. With such understandings researchers may be able to target malignancy broadly, and more effectively.

Whitehead’s Susan Lindquist elected to UK’s Royal Society

May 1, 2015

The UK’s Royal Society today announced that it has elected Whitehead Institute’s Susan Lindquist as a Foreign Member.

Heat-shock protein enables tumor evolution and drug resistance in breast cancer

December 8, 2014

Long known for its ability to help organisms successfully adapt to environmentally stressful conditions, the highly conserved molecular chaperone heat-shock protein 90 (HSP90) also enables estrogen receptor-positive (ER+) breast cancers to develop resistance to hormonal therapy.  

Images of tissue sections from breast cancer patient biopsies

Master heat-shock factor supports reprogramming of normal cells to enable tumor growth and metastasis

July 31, 2014

Long associated with enabling the proliferation of cancer cells, the ancient cellular survival response regulated by Heat-Shock Factor 1 (HSF1) can also turn neighboring cells in their environment into co-conspirators that support malignant progression and metastasis.

Graph of growth curves of wild type and amyloid-beta strains treated with clioquinol

Yeast model reveals Alzheimer’s drug candidate and its mechanism of action

March 3, 2014

Whitehead Institute scientists have used a yeast cell-based drug screen to identify a class of molecules that target the amyloid-β (Aβ) peptide involved in Alzheimer’s disease (AD).  

Image comparing a surface form and cave form of the fish Astyanax mexicanus

Rapid evolution of novel forms: Environmental change triggers inborn capacity for adaptation

December 12, 2013

A team of researchers from Harvard Medical School and Whitehead Institute report that, at least in the case of one variety of cavefish, one agent of evolutionary change is the heat shock protein known as HSP90.

Microscope image of filamentation in Candida albicans with and without amphotericin B resistance

Understanding the evolution of drug resistance points to novel strategy for developing better antimicrobials

October 29, 2013

The most common fungal pathogen in humans, Candida albicans, rarely develops resistance to the antifungal drug amphotericin B (AmB).  This has been puzzling as the drug has been in clinical use for over 50 years. Whitehead Institute scientists have now discovered why.  The genetic mutations that enable certain strains of C. albicans to resist AmB simultaneously render it highly susceptible to environmental stressors and disarm its virulence factors.

Schematic showing nerve cells and person with Parkinson's disease within a yeast cell

Yeast, human stem cells drive discovery of new Parkinson’s disease drug targets

October 24, 2013

Using a discovery platform whose components range from yeast cells to human stem cells, Whitehead Institute scientists have identified a novel Parkinson’s disease drug target and a compound capable of repairing neurons derived from Parkinson’s patients.

Slides of mouse brain tissue from CJD mice that are infected with prions compared to tissue from FFI mice.

New models advance the study of deadly human prion diseases

August 19, 2013

By directly altering the gene coding for the prion protein (PrP), Whitehead Institute researchers have created mouse models of two neurodegenerative prion diseases, each of which manifests in different regions of the brain.  These new models for fatal familial insomnia (FFI) and Creutzfeldt-Jakob disease (CJD) accurately reflect the distinct patterns of destruction caused by the these diseases in humans.  Remarkably, as different as each disease is, they both spontaneously generate infectious prions.

Thwarting protein production slows cancer cells’ malignant march

July 18, 2013

Protein production or translation is tightly coupled to a highly conserved stress response—the heat shock response and its primary regulator, heat shock factor 1 (HSF1)—that cancer cells rely on for survival and proliferation, according to Whitehead Institute researchers. In mouse models of cancer, therapeutic inhibition of translation interrupts HSF1’s activity, dramatically slowing tumor growth and potentially rendering drug-resistant tumors responsive to other therapies.

Pages

© Whitehead Institute for Biomedical Research              455 Main Street          Cambridge, MA 02142