NEW INSIGHTS INTO BRAIN SWELLING AFTER STROKE

W Taylor Kimberly MD PhD
6 May 2013
OBJECTIVES

• Background: introduction to stroke

• Mechanism: types of cerebral edema

• Specific target: preclinical data on the SUR1-TRPM4 channel

• Clinical data: Results of the GAMES-Pilot Trial

• Edema mechanisms: GAMES-Pilot imaging and plasma biomarkers

• Next steps: GAMES-RP
BACKGROUND

- 800,000 strokes occur each year
- 4th leading cause of death in the United States
- Leading cause of long-term disability
- Estimated direct and indirect costs of ~$75 billion
- Two types of strokes:
 - blockage of blood flow: ischemic
 - bleeding from a blood vessel: hemorrhagic
Cerebral Blood Vessels
BACKGROUND

Cerebrovascular Territories

Right

Left

Middle Cerebral Artery (Coronal Plane)

Cortical vascular territories

- Anterior cerebral artery
- Middle cerebral artery
- Posterior cerebral artery

anterior middle posterior
BACKGROUND

Ischemic Stroke:
Cerebrovascular Blockage
BACKGROUND

Left Middle Cerebral Artery (MCA) Stroke

- Word-finding difficulty (aphasia)
- Right-sided weakness
- Right-sided sensory loss
- Right visual field defect
- Left gaze deviation
- Slurred speech (dysarthria)
- Difficulty reading, writing, or calculating

MY FLAM JUST SLAPPED THE GROO. DIDN’T GRINGLE AT ALL!
Left Middle Cerebral Artery (MCA) Stroke

- Left-sided sensory loss
- Inattention (neglect)
- Unawareness of deficits
- Left sided weakness
- Left visual field defect
- Right gaze deviation
- Slurred speech (dysarthria)
An increasing NIHSS number corresponds to a worse neurological deficit and more severe stroke.
For patients with suspected stroke, patients should bypass hospitals that do not have resources to treat stroke and go to a facility capable of treating acute stroke.

Teleneurology has increased the number of point-of-care centers that can receive, evaluate, and treat patients with suspected acute stroke.
BACKGROUND

IV thrombolysis

- Symptoms within 3h (4.5 with consent)
- Ischemic stroke not well-defined on CT
- INR < 1.8, Plt > 100k
- No recent surgery or hemorrhage (14d/21d)
- No recent stroke
- No history of SAH or ICH
- SBP < 185 (can be treated)
- NIHSS > 4
BACKGROUND

Endovascular Therapy

- Multiple techniques available
 - Intra-arterial tPA/urokinase
 - MERCI/Penumbra
 - Stentrievers (Solitaire/Trevo)

- Efficacy data is inconclusive (IMS-3 negative)

- Considered for stroke < 6 hours anterior circulation, < 12-24 hours posterior circulation with confirmation of vessel cutoff
OBJECTIVES

• Background: introduction to stroke
 • Mainstay of treatment since 1996 is “revascularization”
 • Mechanism: types of cerebral edema

• Specific target: preclinical data on the SUR1-TRPM4 channel

• Clinical data: Results of the GAMES-Pilot Trial

• Edema mechanisms: GAMES-Pilot imaging and plasma biomarkers

• Next steps: GAMES-RP
OBJECTIVES

• Background: introduction to stroke

• Mechanism: types of cerebral edema
 • An alternative therapeutic target

• Specific target: preclinical data on the SUR1-TRPM4 channel

• Clinical data: Results of the GAMES-Pilot Trial

• Edema mechanisms: GAMES-Pilot imaging and plasma biomarkers

• Next steps: GAMES-RP
Brain Edema results from:

1. **Cytotoxic edema**
 cytotoxic injury causes cellular swelling

2. **Vasogenic edema**
 vasogenic injury causes dysfunction of the BBB

 - **osmotic forces:** ion concentration gradients
 - **hydrostatic forces:** vascular pressure gradients
Cytotoxic edema

- rapid redistribution of water into cells
- no net change in total water
- basis for DWI acute stroke imaging
VASOGENIC CEREBRAL EDEMA

Vasogenic edema: ionic forces
- net movement of ions into the brain
- increase in total water content
- contributes to brain swelling
Vasogenic edema: hydrostatic forces

- Breakdown of the BBB
- Hydrostatic pressure forces plasma into the brain
- Severe BBB injury leads to hemorrhagic transformation
OBJECTIVES

• Background: introduction to stroke

• Mechanism: types of cerebral edema

• Specific target: preclinical data on the SUR1-TRPM4 channel

• Clinical data: Results of the GAMES-Pilot Trial

• Edema mechanisms: GAMES-Pilot imaging and plasma biomarkers

• Next steps: GAMES-RP
PRECLINICAL DATA

• SUR1 and TRPM4 are only present in the CNS after injury.
• TRPM4 is a calcium-activated non-selective channel that allows cations into the cell and water follows passively.
• An analogous channel exists in the pancreas and regulates insulin secretion.
SUR1-TRPM4 CHANNEL OPENING CAUSES CYTOTOXIC EDEMA

A. Control depletion
B. ATP depletion 5 min
C. ATP 25 min

Courtesy of M. Simard
GLYBURIDE REDUCES MORTALITY AND SWELLING IN A RAT MCAO MODEL
OBJECTIVES

- Background: introduction to stroke
- Mechanism: types of cerebral edema
- Specific target: preclinical data on the SUR1-TRPM4 channel
- Clinical data: Results of the GAMES-Pilot Trial
- Edema mechanisms: GAMES-Pilot imaging and plasma biomarkers
- Next steps: GAMES-RP
Phase 2a open label trial of RP-1127 (glyburide for injection) at 2 centers (UMMC and MGH)

Baseline MRI infarct volume of >82cc on DWI

72 hour infusion for patients within 10 hours at ~3 mg/day

Daily MRI at 24, 48 and 72 hours, with frequent PK sampling

Modified Rankin Scale outcome assessment at 30 and 90 days
GAMES-PILOT vs. HISTORICAL CONTROLS

Imaging Outcomes

Baseline DWI

72 hr DWI

Historical Control

RP-1127
GAMES-PILOT vs. HISTORICAL CONTROLS

Imaging Outcomes

<table>
<thead>
<tr>
<th></th>
<th>GAMES-Pilot (n=10)</th>
<th>Subset of EPITHET (n=12)</th>
<th>Two-sided p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean hemisphere volume, baseline, cm³ (SD)</td>
<td>468.2 (73.7) (420.1, 516.3)</td>
<td>460.3 (62.7) (424.8, 495.8)</td>
<td>0.79</td>
</tr>
<tr>
<td>Mean hemisphere volume, final visit, cm³ (SD)</td>
<td>507.9 (59.2) (469.2, 546.6)</td>
<td>531.8 (59.6) (498.1, 565.5)</td>
<td>0.36</td>
</tr>
<tr>
<td>Mean hemisphere volume increase, cm³ (SD)</td>
<td>49.9 (33.3) (29.3, 70.5)</td>
<td>71.5 (27.0) (56.2, 86.8)</td>
<td>0.11</td>
</tr>
<tr>
<td>Mean DWI volume, baseline, cm³ (SD)</td>
<td>101.8 (22.6) (87.0, 116.6)</td>
<td>137.7 (33.8) (118.6, 156.8)</td>
<td>0.01</td>
</tr>
<tr>
<td>Mean DWI volume, final visit, cm³ (SD)</td>
<td>160.4 (51.7) (126.6, 194.2)</td>
<td>233.8 (41.5) (210.3, 257.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>Mean DWI volume increase, cm³ (SD)</td>
<td>60.3 (41.4) (34.6, 86.0)</td>
<td>96.1 (40.4) (73.3, 118.9)</td>
<td>0.05</td>
</tr>
</tbody>
</table>
GAMES-PILOT vs. HISTORICAL CONTROLS

Clinical Outcomes

<table>
<thead>
<tr>
<th></th>
<th>GAMES-Pilot</th>
<th>Propensity-matched EPITHET-MMI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>9</td>
<td>15</td>
<td>0.55</td>
</tr>
<tr>
<td>Med NIHSS</td>
<td>19.0</td>
<td>19.0</td>
<td>0.55</td>
</tr>
<tr>
<td>Age</td>
<td>51.6 ± 15.8</td>
<td>68.7 ± 14.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Glucose</td>
<td>128 ± 32</td>
<td>126 ± 27</td>
<td>0.91</td>
</tr>
<tr>
<td>DWI</td>
<td>102 ± 24</td>
<td>66 ± 32</td>
<td>0.01</td>
</tr>
<tr>
<td>mRS 0-1</td>
<td>0% (0)</td>
<td>0% (0)</td>
<td>1.00</td>
</tr>
<tr>
<td>mRS 0-2</td>
<td>11.1% (1)</td>
<td>6.7% (1)</td>
<td>1.00</td>
</tr>
<tr>
<td>mRS 0-3</td>
<td>44.4% (4)</td>
<td>20.0% (3)</td>
<td>0.36</td>
</tr>
<tr>
<td>mRS 0-4</td>
<td>100% (9)</td>
<td>46.7% (7)</td>
<td>0.01</td>
</tr>
<tr>
<td>mRS 0-5</td>
<td>100% (9)</td>
<td>73.3% (11)</td>
<td>0.29</td>
</tr>
<tr>
<td>Mortality</td>
<td>0% (0)</td>
<td>26.7% (4)</td>
<td>0.26</td>
</tr>
<tr>
<td>Symptomatic Hemorrhage</td>
<td>0% (0)</td>
<td>13.3% (2)</td>
<td>0.51</td>
</tr>
</tbody>
</table>
OBJECTIVES

• Background: introduction to stroke

• Mechanism: types of cerebral edema

• Specific target: preclinical data on the SUR1-TRPM4 channel

• Clinical data: Results of the GAMES-Pilot Trial

• Edema mechanisms: GAMES-Pilot imaging and plasma biomarkers

• Next steps: GAMES-RP
Identification of intermediate endpoints that:

- Strengthen the clinical findings
- Support mechanism of action of the drug
- Provide insight into the biology of cerebral edema
- Analysis of both imaging and plasma biomarkers
IMAGING CYTOTOXIC EDEMA

Apparent Diffusion Coefficient (ADC) MRI detects cytotoxic edema

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Day 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAMES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ IV glyburide does not appear to alter cytotoxic edema in patients
T2 FLAIR MRI detects vasogenic edema

- 24 hours
- 48 hours
- 72 hours
IMAGING VASOGENIC EDEMA

Day 2

Control

GAMES

DWI

FLAIR
T2 FLAIR MRI detects vasogenic edema

***, p<0.005
IMAGING VASOGENIC EDEMA

T2 FLAIR MRI detects vasogenic edema

***, p<0.01
There is increased water diffusion after day 1, from the entry of edema fluid into the brain.
MMP-9 is a marker of BBB integrity and vasogenic edema.
Imaging and plasma biomarkers and vasogenic edema

Imaging analysis:

- glyburide appears to attenuate vasogenic edema
- imaging data alone does not distinguish between ionic edema or hydrostatic edema

Plasma analysis:

- MMP-9 identifies a biological pathway
- relates drug mechanism of action to BBB physical integrity (ie, hydrostatic edema)
OBJECTIVES

• Background: introduction to stroke

• Mechanism: types of cerebral edema

• Specific target: preclinical data on the SUR1-TRPM4 channel

• Clinical data: Results of the GAMES-Pilot Trial

• Edema mechanisms: GAMES-Pilot imaging and plasma biomarkers

• Next steps: GAMES-RP
GAMES-RP TRIAL

- 10 US Centers, up to a maximum of ~15 sites
- Randomized, double-blind, placebo-controlled phase II trial
- Two-stage, adaptive design with an interim analysis after the first 50 patients
- Second stage will proceed after review by unblinded statistician and DSMB. If a pre-specified futility threshold is not met, recalculate sample size estimate up to a maximum of 190 additional subjects.
• **Primary safety endpoint:** refractory hypoglycemia

• **Primary efficacy endpoint:** 20% difference in the proportion of modified Rankin Scale score 0-4 + decompressive craniectomy (DC)
GAMES-RP TRIAL

- Baseline MRI infarct volume of >82cc on diffusion imaging in patients with or without IV tPA
- 72 hour infusion for patients within 10 hours at 3 mg/day
- One study-related brain MRI after drug infusion at 72-84 hours
- PK and biomarker sampling at 5 time points
- DNA collection for consenting patients
GAMES-RP TRIAL

Study Leadership
Kevin Sheth
W. Taylor Kimberly

Sponsor
Sven Jacobson
Remedy Pharmaceuticals

Data coordinating center
Jordan Elm (MUSC)

Imaging coordinating center
Lauren Beslow-Kaye
Gordon Sze (Yale)

Biomarker coordinating center
Mass General Hospital

DSMB
Don Easton
Karen Johnston
Michael Diringer

Adjudication
Rudiger von Kummer
Javier Romero
Andrew Demchuk
ACKNOWLEDGEMENTS
GAMES-PILOT and GAMES-RP

U Maryland
Kevin Sheth
Barney Stern
J. Marc Simard

Remedy Pharmaceuticals, Inc
Sven Jacobson

Data Coordinating Center
Jordan Elm

Mass General Hospital
Sydney O’Connor
Hannah Irvine
Bart Brouwers
Matt Siket
J. Alfredo Caceres
Octavio Pontes Neto
Neuro ICU Nurses

Imaging Coordinating Center
Albert Yoo
ACKNOWLEDGEMENTS

BIOMARKER ANALYSIS

Imaging analysis
Tom Battey
Ruchi Jha
Ona Wu

Plasma analysis
Ly Pham
Yu Wang

Genetics
Guido Falcone
Chris Anderson
Billy Devan
Jonathan Rosand

Collaborators
Aneesh Singhal
Karen Furie
Thank you