Presentation Overview

• Part 1 (Dena)
 – What is aging? Why study aging?
 – Lessons from centenarians
 – Evolutionary perspective on aging
 – Calorie restriction

• Part 2 (Michael)
 – Long lived mutants
 – Conserved aging pathways
 – Hot topics: aging in the news
What is aging?

• “To grow old or show signs of growing old”
 Webster’s New World Dictionary, 2005.

• “a process of intrinsic, progressive, and generalized physical deterioration that occurs over time beginning at about the age of reproductive maturity”
Why should we study aging?
Is this a big deal?

• People over 65 in the US outnumber the entire population of Canada
• The number will more than double by 2050
• Diseases associated with aging will pose a huge social and economic burden

Can we hope to delay all of the diseases of aging and extend healthy lifespan?
What Causes Aging?

- DNA damage
- Wear and tear
- Reactive oxygen species
- Loss of telomeres
- Reduced stem cell function
Longest-lived Human

- Jeanne Louise Calment
- 21 February 1875 – 4 August 1997
- longest confirmed human life span in history
- 122 years and 164 days
Lessons from Centenarians: Okinawans

- 50 centenarians per 100,000
 - US: 10-20 per 100,00
- Genetics and environment

![Life Expectancy in Long-lived Populations and the US](chart.png)

Lessons from Centenarians: Ashkenazi Jews

• Large genetic component
 • Likely to be passed from generation to generation
• Correlated with high HDL and low LDL
Observation from all centenarians

“Our work suggests that most centenarians have been remarkably healthy and experienced a rapid terminal decline late in life, resulting in a compression of morbidity to their final years” (Bernstein et al., J Gerontol Biol Sci. 2004; Willcox DC et al. Am J Geriatr Psychiatr. 2007).

Can we confer these benefits to more people?
Evolutionary perspectives on aging:
The traditional view

Selection!

No selection!

Selection!
When would delayed aging be an evolutionary advantage?

Famine: not a good time for offspring!

No more famine!

delay reproduction
postpone aging

Selection!
Calorie Restriction

• Reduction in calories without malnutrition
 – May mimic natural periods of nutrient scarcity
• In the lab, calories are reduced 10-30%
Calorie restriction extends lifespan in rodents

Control

Restricted

Percent surviving vs Time

Restricted

Control

Age: 28 months
Calorie Restriction in Primates

Normal diet Calorie restriction

Diagram showing the effects of calorie restriction on neoplasia, cardiovascular disease, and gluco-regulatory impairment.

Graph showing the percentage of animals without age-related disease over time, with separate lines for control and calorie restriction (CR).
Could Calorie Restriction Work in Humans?

- **CALERIE Study**
 Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy

- Funded by National Institutes of Aging

- 3 Sites (Including Tufts), ~150 people

- 25% reduction in calories, 2 years

- Study ongoing
Summary of Part 1

- Biological aging is a decline in function over time, beginning after the reproductive years
- Symptoms of aging have many causes
- Aging can be controlled by complex genetics and by diet
Questions for Part 2

• Are there individual genes that control aging and lifespan?
• Is aging controlled the same way in all species?
• Can we harness the genetic pathways that control aging and create drugs to extend lifespan?
Outline for Part 2

• Genes that control aging
 – Mutations that mimic accelerated aging
 – Mutations that extend lifespan
• Conserved aging pathways
• Hot topics: drugs that extend lifespan
Hutchinson-Guilford Progeria

- 1 in 4 million affected
- Caused by mutation that affect structure of the nucleus
- Many classic “aging” symptoms
 - alopecia, wrinkles, atherosclerosis, CVD
- But: no “wear and tear” diseases like cataracts or arthritis
Werner Syndrome

- Disease onset in teens; very rare
- Caused by mutation in DNA processing enzyme
- Unstable chromosomes
- Many signs of aging
 - Grey hair, cataracts, CVD, diabetes
- No senility
Progeria Summary

- Very rare syndromes
- Mimic some, but not all, phenotypes of aging
- Give some clues about causes of aging

What about mutations that delay aging and extend life?
Mutations can extend the lifespan of yeast (*S. cervisae*)
A single gene that regulates lifespan in an animal: *C. elegans*, 1993
A gene that regulates lifespan in *D. melanogaster*: 1998
A single mutation extends lifespan in mouse: 1996
Many mutations that extend mouse lifespan are now known.
Pathways that regulate lifespan are evolutionarily conserved.
Summary: Genes and Aging

- Single gene mutations can extend lifespan
- Amazingly, aging pathways are conserved across 1 billion years of evolution
- Aging genes and calorie restriction affect the same biological pathways
 - Is there a single regulatory pathway for lifespan?
Can we make drugs that delay aging?
Resveratrol treatment extends lifespan in yeast
Resveratrol treatment extends lifespan in other organisms.
Resveratrol improves health and survival in mice fed a “high fat” diet.
Rapamycin

- Drug discovered in the soil on Easter island (Rapa Nui)
- Current clinical use: immunosuppression and chemotherapy
How is Rapamycin linked to aging?

Tor mutations extend lifespan
Rapamycin treatment extends lifespan in middle-aged mice
Rapamycin treatment improves Alzheimer’s disease in mice

Plaques in the brain

Mice also show improved cognitive performance!
Interventions Testing Program

• Systematic evaluation of compounds that might extend life in mice
• Test compounds suggested by the scientific community
• Multiple sites
• Genetically diverse mice
• Compounds currently being tested:
 – Green tea extract, curcumin, aspirin, and 12-15 others
Summary

• Aging is controlled by genes
• Mutations can accelerate or delay aging
• Pathways that control aging are conserved across 1 billion years of evolution
• Drugs that target these pathways may someday be used to treat diseases of aging and extend life
Thank you!